Skip to main content

Chemical Leaching of Inactive Gold Mine Tailings as a Secondary Source of Cobalt and Nickel—A Preliminary Case Study

  • Conference paper
  • First Online:
Ni-Co 2021: The 5th International Symposium on Nickel and Cobalt

Abstract

Tailings from inactive gold mines, that are not yet successfully restored (generation of As- and Co-contaminated neutral mine drainage), represent a promising secondary source of strategic metals including Co and Ni. Three different mine tailings (sites A, B and C) from Cobalt Mining Camp were collected and characterized. Preliminary chemical leaching tests were conducted with inorganic acids (HCl, H2SO4 and HNO3) to solubilize Co and Ni at different concentrations (0.01–0.5 N). The influence of the number of the leaching steps on the recovery of Co and Ni was also evaluated. Promising concentrations of Co (0.7%) and Ni (0.3%) were reported in tailings from site A, while lower concentrations were measured in tailings from sites B and C (0.02–0.1%), requiring pre-concentration steps (not tested in this preliminary study) before leaching to reduce operating costs. More than 85% of both Co and Ni were solubilized from tailings from site A after only 30 min using H2SO4 (0.25 N) at room temperature. Lower efficiencies (36–62%) were observed for tailings from sites B and C, which can be partially explained by the higher amounts of acid-consuming minerals present in the gangue. Additional experiments are required to better understand the mechanisms involved in Co and Ni solubilization and to optimize operating conditions in terms of Co and Ni recovery.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 189.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 249.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Pazik PM, Chielewski T, Glass HL, Kowalczuk PB (2016) World production and possible recovery of from the Kupferschiefer stratiform copper ore. In: E3S web of conferences–mineral engineering conference MEC2016, vol 8, pp 01063, 1–9. https://doi.org/10.1051/e3sconf/20160801063

  2. Commission Européenne (2017) Communication de la commission au parlement européen, au conseil, au comité économique et social européen et au comité des régions relative à la liste 2017 des matières premières critiques pour l’UE, p 8

    Google Scholar 

  3. MERN (2019) Réflexion sur la place du Québec dans la mise en valeur des minéraux critiques et stratégiques, p 22

    Google Scholar 

  4. Falagán C, Grail BM, Johnson DB (2017) New approaches for extracting and recovering metals from mine tailings. Miner Eng 106:71–78. https://doi.org/10.1016/j.mineng.2016.10.008

    Article  CAS  Google Scholar 

  5. Landenberger A, Arvanitidis N, Jonsson E, Arvidsson R, Casanovas S, Lauri L (2016). Identification and quantification of secondary CRM resources in Europe. SCRREEN, p 129

    Google Scholar 

  6. Petavratzi E, Gunn G, Kresse C (2019) Cobalt–British geological survey commodity review, p 72

    Google Scholar 

  7. Crundwell F, Moats M, Ramachandran V, Robinson T, Davenport WG (2011) Extractive metallurgy of nickel, cobalt and platinum group metals. Elsevier, p 622

    Google Scholar 

  8. Bellenfant G, Guezennec AG, Bodéman F, d’Hugues P, Cassard D (2013) Re-processing of mining waste: Combining environmental management and metal recovery? In: Proceedings of the eighth international seminar on mine closure. Australian Centre for Geomechanics, Cornwall, pp 571–582. https://doi.org/10.36487/ACG_rep/1352_48_Bellenfant

  9. Shaw RA, Petavratzi E, Bloodworth AJ (2013) Resource recovery from mine waste–Chapter 2. In: Hester RE, Harrison RM (ed.) Waste as a resource, Royal Society of Chemistry, pp 44–65

    Google Scholar 

  10. Ahmadi A, Khezri M, Abdollahzadeh AA, Askari M (2015) Bioleaching of copper, nickel and cobalt from the low grade sulfidic tailing of Golgohar Iron Mine. Iran Hydromet 154:1–8. https://doi.org/10.1016/j.hydromet.2015.03.006

    Article  CAS  Google Scholar 

  11. Chen G, Yang H, Li H, Tong L (2016) Recovery of cobalt as cobalt oxalate from cobalt tailings using moderately thermophilic bioleaching technology and selective sequential extraction. Miner 6(3):1–11. https://doi.org/10.3390/min6030067

    Article  CAS  Google Scholar 

  12. Mondal S, Kumar BP, Singh DK, Chakravartty JK (2015) Parametric optimization for leaching of cobalt from Sukinda ore of lateritic origin–a Taguchi approach. Sep Purif Technol 156(2):827–834. https://doi.org/10.1016/j.seppur.2015.11.007

    Article  CAS  Google Scholar 

  13. Xie Y, Xu Y, Yan L, Yang R (2005) Recovery of nickel, copper and cobalt from low-grade Ni-Cu sulfide tailings. Hydrometallurgy 80:54–58. https://doi.org/10.1016/j.hydromet.2005.07.005

    Article  CAS  Google Scholar 

  14. Wang Y, Zhou C (2002) Hydrometallurgical process for recovery of cobalt from zinc plant residue. Hydrometallurgy 63:225–234. https://doi.org/10.1016/S0304-386X(01)00213-4

    Article  CAS  Google Scholar 

  15. Blengini GA, Mathieux F, Mancini L, Viegas HM (2019) Recovery of critical and other raw materials from mining waste and landfills. JRC Science for policy report, European Union, Luxembourg, p 130

    Google Scholar 

  16. Cs Gahan, Srichandan H, Kim DJ, Akcil A (2012) Biohydrometallurgy and biomineral processing technology: a review on its past, present and future. Res J Rec Sci 1(10):85–99

    Google Scholar 

  17. Mäkinen J, Salo M, Khoshkhoo M, Sundkvist JE, Kinnunen P (2020) Bioleaching of cobalt from sulfide mining tailings: a mini-pilot study. Hydrometallurgy 196:1054181–6. https://doi.org/10.1016/j.hydromet.2020.105418

    Article  CAS  Google Scholar 

  18. Zhen S, Yan Z, Zhang Y, Wang J, Campbell M, Qin W (2009) Column bioleaching of a low grade nickel-bearing ore containing high magnesium as olivine, chlorite and antigorite. Hydrometallurgy 96:337–341. https://doi.org/10.1016/j.hydromet.2008.11.007

    Article  CAS  Google Scholar 

  19. Coto O, Galizia F, Hernández I, Marrero J, Donati E (2008) Cobalt and nickel recoveries from laterite tailings by organic and inorganic bio-acids. Hydrometallurgy 94:18–22. https://doi.org/10.1016/j.hydromet.2008.05.017

    Article  CAS  Google Scholar 

  20. Ozer M (2019) Cobalt and copper recovery from the ancient flotation tailings by selective sulfation roast-leaching process. J Min Metall Sect B-Metall 55(3):315–324. https://doi.org/10.2298/JMMB190304043O

    Article  Google Scholar 

  21. Shengo ML, Kime MB, Mambwe MP, Nyembo TK (2019) A review of the beneficiation of copper-cobalt-bearing minerals in the Democratic Republic of Congo. J Sustain Mining 18:226–246. https://doi.org/10.1016/j.jsm.2019.08.001

    Article  Google Scholar 

  22. Dumaresq CG (1993) The occurrence of arsenic and heavy metal contamination from natural and anthropogenic sources in the Cobalt area of Ontario. MSc thesis, Carleton University, Ottawa, Canada, p 355

    Google Scholar 

  23. Kwong YTJ, Beauchemin S, Hossain MF, Gould WD (2007) Transformation and mobilization of arsenic in the historic Cobalt mining camp, Ontario, Canada. J Geochem Explor 92:133–150. https://doi.org/10.1016/j.gexplo.2006.08.002

    Article  CAS  Google Scholar 

  24. Percival JB, Kwong YJT, Dumaresq CG, Michel FA (2007) Distribution of As, Ni and Co in tailings and surface waters in the Cobalt area, Ontario. Mining and the Environment IV Conference, Sudbury, Ontario, Canada, October 19–27, p 10

    Google Scholar 

  25. CEAEQ (2013) Détermination du carbone et du soufre: méthode de combustion et dosage par spectrophotométrie infrarouge, MA 310-CS 1.0 Rév 3, Ministère du Développement Durable, de l’Environnement, de la Faune et des Parcs du Québec, Québec, Canada, p 8

    Google Scholar 

  26. Lawrence RW, Scheske M (1997) A method to calculate the neutralization potential of mining wastes. Environ Geol 32:100–106

    Article  CAS  Google Scholar 

  27. Ure A, Davidson C (2002) Chemical speciation in soils and related materials by selective chemical extraction. Chem Spec Environ 265–300

    Google Scholar 

  28. Investmine (2020) Copper prices and copper price charts. http://www.infomine.com/investment/metal-prices/copper/. Accessed 25 Feb 2020

  29. Drahota P, Filippi M (2009) Secondary arsenic minerals in the environment: a review. Environ Int 35(8):1243–1255. https://doi.org/10.1016/j.envint.2009.07.004

    Article  CAS  Google Scholar 

  30. Jambor JL, Dutrizac JE (1995) Solid solutions in the annabergite–erythrite–hörnesite synthetic system. Can Mineral 33:1063–1071

    CAS  Google Scholar 

  31. Battaglia F, Morin D, Ollivier P (1994) Dissolution of cobaltiferous pyrite by Thiobacillus ferrooxidans and Thiobacillus thiooxidans: factors influencing bacterial leaching efficiency. J Biotechnol 32(1):11–16. https://doi.org/10.1016/0168-1656(94)90115-5

    Article  CAS  Google Scholar 

  32. D’Hugues P, Cezac P, Cabral T, Battaglia F, Truong-Meyer XM, Morin D (1997) Bioleaching of a cobaltiferous pyrite: a continuous laboratory-scale study at high solids concentration. Miner Eng 10:507–527. https://doi.org/10.1016/S0892-6875(97)00029-0

    Article  Google Scholar 

  33. Tanong K, Coudert L, Mercier G, Blais JF (2016) Recovery of metals from a mixture of various spent batteries by a hydrometallurgical process. J Environ Manage 181:95–107. https://doi.org/10.1016/j.jenvman.2016.05.084

    Article  CAS  Google Scholar 

  34. Altinkaya P, Liipo J, Kolehmainen E, Haapalainen M, Leikola M, Lundström M (2019) Leaching of trace amounts of metals from flotation tailings in cupric chloride solutions. Mining Metall Explor 36:335–342. https://doi.org/10.1007/s42461-018-0015-9

    Article  Google Scholar 

  35. Yaylali B, Yazici EY, Celep O, Deveci H (2016) Extraction of cobalt from a flotation tailngs in different mineral acids under oxidative conditions. In: Proceedings of the 15th international mineral processing symposium, Istanbul, Turkey, October 19–21, p 13

    Google Scholar 

  36. Innocenzi V, Veglio F (2012) Recovery of rare earths and base metals from spent nickel-metal hydride batteries by sequential sulphuric acid leaching and selective precipitations. J Power Sources 211:184–191. https://doi.org/10.1016/j.jpowsour.2012.03.064

    Article  CAS  Google Scholar 

  37. Jouini M, Rakotonimaro TV, Neculita CM, Genty T, Benzaazoua M (2019) Stability of metal-rich residues from laboratory multi-step treatment system for ferriferous acid mine drainage. Environ Sci Pollut Res 26:35588–35601. https://doi.org/10.1007/s11356-019-04608-1

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lucie Coudert .

Editor information

Editors and Affiliations

Appendix

Appendix

See Figs. S1 and S2.

Fig. S1
figure 5

SEM-EDS secondary electron and X-mapping images of a annabergite-erythrite and b chalcopyrite and arseniosiderite in tailings from site A. (Color figure online)

Fig. S2
figure 6

SEM-EDS secondary electron and X-mapping images of a safflorite and clinosafflorite and b cobaltiferous arsenopyrite in tailings from site C. (Color figure online)

Rights and permissions

Reprints and permissions

Copyright information

© 2021 The Minerals, Metals & Materials Society

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Jouini, M., Perrin, M., Coudert, L. (2021). Chemical Leaching of Inactive Gold Mine Tailings as a Secondary Source of Cobalt and Nickel—A Preliminary Case Study. In: Anderson, C., et al. Ni-Co 2021: The 5th International Symposium on Nickel and Cobalt. The Minerals, Metals & Materials Series. Springer, Cham. https://doi.org/10.1007/978-3-030-65647-8_15

Download citation

Publish with us

Policies and ethics