Skip to main content

Non-invasive Sampling Techniques Applied to Conservation Genetic Studies in Mammals

  • Chapter
  • First Online:
Molecular Ecology and Conservation Genetics of Neotropical Mammals

Abstract

Non-invasive samples have been used in Conservation Genetics and Molecular Ecology studies since the 1990s. The continuous advances in DNA extraction, amplification, and data analysis techniques have made them the perfect choice for the study of endangered populations and species. In the first part of this chapter, we carry out a historical review of sampling techniques used for genetic studies. Then, we analyze what type of samples, molecular markers, and sampling techniques are the most used for the genetic study of Neotropical mammals from samples obtained by non-invasive methods. Later, we review what are the advantages and limitations of the use of this type of samples as well as the possible solutions to the main problems associated with their use, and finally, we assess the future challenges of using non-invasive sampling. Our review also includes several case studies in which different sources of DNA and several molecular markers are used to address genetic studies in Neotropical mammals.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 139.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 179.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 179.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  • Abba AM, Cassini GH, Túnez JI et al (2018) The enigma of the Yepes’ armadillo: Dasypus mazzai, D. novemcinctus or D. yepesi? Rev Mus Argent Cienc Nat 20(1):83–90

    Article  Google Scholar 

  • Abba AM, Jayat JP, Albanesi S et al (2019) Dasypus mazzai. In: SAyDS–SAREM (eds) Categorización 2019 de los mamíferos de Argentina según su riesgo de extinción. Lista Roja de los mamíferos de Argentina. Versión digital: http://cma.sarem.org.ar

  • Abril VV, Carnelossi EAG, González S et al (2010) Elucidating the evolution of the red brocket deer Mazama americana complex (Artiodactyla; Cervidae). Cytogenet Genome Res 128:177–187

    Article  CAS  PubMed  Google Scholar 

  • Allendorf FW, Luikart GH, Aitken SN (2013) Conservation and the Genetics of populations, 2nd edn. Willey-Blackwell, Oxford

    Google Scholar 

  • Andrews KR, Good JM, Miller MR et al (2016) Harnessing the power of RADseq for ecological and evolutionary genomics. Nat Rev Genet 17(2):81–92

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Andrews KR, Adams JR, Cassirer EF et al (2018) A bioinformatic pipeline for identifying informative SNP panels for parentage assignment from RAD seq data. Mol Ecol Resour 18(6):1263–1281

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Apprill A, Miller CA, Moore MJ et al (2017) Extensive core microbiome in drone-captured whale blow supports a framework for health monitoring. Host-Microbe Biol c2:e00119-00117

    Google Scholar 

  • Aristizábal Duque SL, Orozco-Jiménez LY, Zapata-Escobar C (2018) Conservation genetics of otters: Review about the use of non-invasive samples. Therya 9(1):85–93

    Article  Google Scholar 

  • Avise JC (2004) Molecular markers, natural history and evolution, 2nd edn. Chapman and Hall, New York

    Google Scholar 

  • Baird NA, Etter PD, Atwood TS et al (2008) Rapid SNP discovery and genetic mapping using sequenced RAD markers. PLoS One 3(10):e3376. https://doi.org/10.1371/journal.pone.0003376

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Barbosa S, Pauperio J, Searle JB et al (2013) Genetic identification of Iberian rodent species using both mitochondrial and nuclear loci: application to noninvasive sampling. Mol Ecol Resour 13(1):43–56. https://doi.org/10.1111/1755-0998.12024

    Article  CAS  PubMed  Google Scholar 

  • Beja-Pereira A, Olivera R, Alves PC et al (2009) Advancing ecological understandings through technological transformations in noninvasive genetics. Mol Ecol Resour 9:1279–1301

    Article  PubMed  Google Scholar 

  • Bellemain E, Swenson JE, Tallmon D et al (2005) Estimating population size of elusive animals with DNA from hunter collected feces: comparing four methods for brown bears. Conserv Biol 19:150–161

    Article  Google Scholar 

  • Bhagavatula J, Singh L (2006) Genotyping faecal samples of Bengal tiger Panthera tigris tigris for population estimation: a pilot study. BMC Genet 7:48. https://doi.org/10.1186/1471-2156-7-48

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bradley BJ, Doran-Sheehy DM, Vigilant L (2007) Potential for female kin associations in wild western gorillas despite female dispersal. Proc R Soc B Biol Sci 274:2179–2185

    Article  Google Scholar 

  • Brinkman TJ, Schwartz MK, Person DK et al (2010) Effects of time and rainfall on PCR success using DNA extracted from deer fecal pellets. Conserv Genet 11:1547–1552

    Article  CAS  Google Scholar 

  • Brooks T, Hannah L, da Fonseca GAB et al (2001) Prioritizing hotspots, representing transitions. Trends Ecol Evol 16:673. https://doi.org/10.1016/S0169-5347(01)02349-7

    Article  Google Scholar 

  • Broquet T, Ménard N, Petit E (2007) Noninvasive population genetics: a review of sample source, diet, fragment length and microsatellite motif effects on amplification success and genotyping error rates. Conserv Genet 8:249–260

    Article  Google Scholar 

  • Byrne MS, Quintana RD, Bolkovic ML et al (2015) The role of river drainages in shaping the genetic structure of capybara populations. Genetica 143:645–656

    Article  PubMed  Google Scholar 

  • Byrne MS, Quintana RD, Bolkovic ML et al (2019) Population genetics of the capybara, Hydrochoerus hydrochaeris, in the Chaco-pampean region. Mamm Biol 96:14–22

    Article  Google Scholar 

  • Caragiulo A, Dias-Freedman I, Clark JA et al (2014) Mitochondrial DNA sequence variation and phylogeography of Neotropic pumas (Puma concolor). Mitochondrial DNA 25(4):304–312

    Google Scholar 

  • Carroll EL, Bruford MW, DeWoody JA et al (2018) Genetic and genomic monitoring with minimally invasive sampling methods. Evol Appl 11:1094–1119

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cattet M, Boulanger J, Stenhouse G et al (2008) An evaluation of long-term capture effects in ursids: implications for wildlife welfare and research. J Mammal 89(4):973–990

    Article  Google Scholar 

  • Centelleghe C, Carraro L, Gonzalvo J et al (2020) The use of Unmanned Aerial Vehicles (UAVs) to sample the blow microbiome of small cetaceans. PLoS One 15:e0235537

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chesser RK (1983) Genetic variability within and among populations of the black-tailed prairie dog. Evolution 37(2):320–331

    PubMed  Google Scholar 

  • Chiou KL, Bergey CM (2015) FecalSeq: methylation-based enrichment for noninvasive population genomics from feces. bioRxiv. https://doi.org/10.1101/032870

  • Christie KS, Gilbert SL, Brown CL et al (2016) Unmanned aircraft systems in wildlife research: current and future applications of a transformative technology. Front Ecol Environ 14:241–251

    Article  Google Scholar 

  • Cosse MJ, Del Moral Sachetti F, Mannise N et al (2014) Genetic evidence confirms presence of Andean bears in Argentina. Ursus 25(2):163–171

    Article  Google Scholar 

  • Costello MJ, Beard KH, Corlett RT et al (2016) Field work ethics in biological research. Biol Conserv 203:268–271. https://doi.org/10.1016/j.biocon.2016.10.008

    Article  Google Scholar 

  • Creel S, Spong G, Sands JL et al (2003) Population size estimation in Yellowstone wolves with error-prone noninvasive microsatellite genotypes. Mol Ecol 12:2003–2009

    Article  PubMed  Google Scholar 

  • Cueva DF, Gutierrez B, Bruque G et al (2018) Mitochondrial DNA reveals low genetic diversity in Ecuadorian Andean bears. Ursus 29(1):43–50

    Article  Google Scholar 

  • De Barba M, Waits LP, Genovesi P et al (2010) Comparing opportunistic and systematic sampling methods for non-invasive genetic monitoring of a small translocated brown bear population. J Appl Ecol 47(1):172–181

    Article  Google Scholar 

  • de la Torre S, Yépez P, Nieto D et al (2013) Preliminary evaluation of the effects of habitat fragmentation on habitat use and genetic diversity of pygmy marmosets in Ecuador. In: Marsh L, Chapman C (eds) Primates in fragments. developments in primatology: progress and prospects. Springer, New York, pp 437–445

    Chapter  Google Scholar 

  • Dematteo KE, Rinas MA, Argüelles CF et al (2014a) Using detection dogs and genetic analyses of scat to expand knowledge and assist felid conservation in Misiones, Argentina. Integr Zool 9:623–639. https://doi.org/10.1111/1749-4877.12113

    Article  PubMed  Google Scholar 

  • Dematteo KE, Rinas MA, Argüelles CF et al (2014b) Noninvasive techniques provide novel insights for the elusive bush dog (Speothos venaticus). Wildl Soc Bull 38:862–873. https://doi.org/10.1002/wsb.474

    Article  Google Scholar 

  • DeWoody JA, Fernandez NB, Brüniche-Olsen A et al (2017) Characterization of the gray whale Eschrichtius robustus genome and a genotyping array based on single-nucleotide polymorphisms in candidate genes. Biol Bull 232(3):186–197

    Article  CAS  PubMed  Google Scholar 

  • Díaz-Ferguson E, Hunter M, Guzmán HM (2017) Genetic composition and connectivity of the Antillean manatee (Trichechus manatus manatus) in Panama. Aquat Mamm 43:378–386

    Article  Google Scholar 

  • do Passo Ramalho F, Miotto R, Martins N et al (2014) Maned wolf (Chrysocyon brachyurus) minimum population size and genetic diversity in a Cerrado protected area of southeastern Brazil revealed by fecal DNA analysis. Mammalia 78(4):465–472

    Google Scholar 

  • Doyle JM, Katzner TE, Roemer GW et al (2016) Genetic structure and viability selection in the golden eagle (Aquila chrysaetos), a vagile raptor with a Holarctic distribution. Conserv Genet 17(6):1307–1322

    Article  Google Scholar 

  • Eggert LS, Maldonado JE, Fleischer RC (2005) Nucleic Acid Isolation from ecological samples- animal scat and other associated materials. Method Enzymol 95(395):73–82

    Article  Google Scholar 

  • Eguiarte LE, Souza V, Aguirre X (eds) (2007) Ecología molecular. Instituto Nacional de Ecología, Universidad Nacional Autónoma de México, México DF

    Google Scholar 

  • Elshire RJ, Glaubitz JC, Sun Q et al (2011) A robust, simple genotyping-by-sequencing (GBS) approach for high diversity species. PLoS One 6(5):e19379. https://doi.org/10.1371/journal.pone.0019379

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Epps CW, Palsbøll PJ, Wehausen JD et al (2006) Elevation and connectivity define genetic refugia for mountain sheep as climate warms. Mol Ecol 15:4295–4302

    Article  PubMed  Google Scholar 

  • Escobedo-Morales LA, Mandujano S, Eguiarte LE et al (2016) First phylogenetic analysis of Mesoamerican brocket deer Mazama pandora and Mazama temama (Cetartiodactyla: Cervidae) based on mitochondrial sequences: implications on Neotropical deer evolution. Mamm Biol 81:303–313

    Article  Google Scholar 

  • Field KA, Paquet PC, Artelle K et al (2019) Publication reform to safeguard wildlife from researcher harm. PLoS Biol 17(4):e3000193. https://doi.org/10.1371/journal.pbio.3000193

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Fitak RR, Naidu A, Thompson RW et al (2016) A new panel of SNP markers for the individual identification of North American pumas. J Fish Wildl Manag 7(1):13–27

    Article  Google Scholar 

  • Frankham R, Briscoe DA, Ballou JD (2010) Introduction to conservation genetics, 2nd edn. Cambridge University Press, Cambridge

    Book  Google Scholar 

  • Frantzen MA, Silk JB, Ferguson JW et al (1998) Empirical evaluation of preservation methods for faecal DNA. Mol Ecol 7(10):1423–1428

    Article  CAS  PubMed  Google Scholar 

  • Freeland JR (2019) Molecular ecology, 3rd edn. Wiley, Chichester

    Google Scholar 

  • Funk VA, Richardson KS, Ferrier S (2005) Survey-gap analysis in expeditionary research: where do we go from here? Biol J Linn Soc 85:549–567

    Article  Google Scholar 

  • Gallo O, Castillo DF, Godinho R et al (2020) Genetic diversity, population structure, and immigration, in a partially hunted puma population of south-central Argentina. J Mammal 101:766–778

    Article  Google Scholar 

  • Geoghegan JL, Pirotta V, Harvey E et al (2018) Virological sampling of inaccessible wildlife with drones. Viruses 10:300. https://doi.org/10.3390/v10060300

    Article  CAS  PubMed Central  Google Scholar 

  • González S, Cosse M, Franco MDR et al (2015) Population Structure of mtDNA Variation due to Pleistocene Fluctuations in the South American Maned Wolf (Chrysocyon brachyurus, Illiger, 1815): Management Units for Conservation. J Hered 106:459–468

    Article  PubMed  CAS  Google Scholar 

  • Goossens B, Bruford MW (2009) Non-invasive genetic analysis in conservation. In: Bertorelle G, Bruford MW, Hauffe HC et al (eds) Population genetics for animal conservation. Cambridge University Press, Cambridge, pp 167–201

    Google Scholar 

  • Goossens B, Chikhi L, Utami SS et al (2000) A multi-samples, multi-extracts approach for microsatellite analysis of faecal samples in an arboreal ape. Conserv Genet 1:157–162

    Article  CAS  Google Scholar 

  • Goossens B, Abdullah ZB, Sinyor JB (2004) Which nests to choose: collecting shed hairs from wild orang-utans. Folia Primatol 75:23–26

    Article  Google Scholar 

  • Goymann W (2005) Noninvasive monitoring of hormones in bird droppings: physiological validation, sampling, extraction, sex differences, and the influence of diet on hormone metabolite levels. Ann N Y Acad Sci 1046:35–53

    Article  CAS  PubMed  Google Scholar 

  • Greenwood JJD (1996) Basic techniques. ecological census techniques: a handbook. Cambridge University Press, Cambridge

    Google Scholar 

  • Grenier MB, Buskirk SW, Anderson-Sprecher R (2009) Population indices versus correlated density estimates of black-footed ferret abundance. J Wildl Manag 73:669–676. https://doi.org/10.2193/2008-269

    Article  Google Scholar 

  • Grisham BA, Boal CW, Mitchell NR et al (2015) Evaluation of capture techniques on Lesser Prairie-Chicken trap injury and survival. J Fish Wildl Manag 6(2):318–326

    Article  Google Scholar 

  • Gutiérrez EE, Maldonado JE, Radosavljevic A et al (2015) The taxonomic status of Mazama bricenii and the significance of the Táchira Depression for mammalian endemism in the Cordillera de Mérida, Venezuela. PLoS One 10:e0129113. https://doi.org/10.1371/journal.pone.0129113

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gutiérrez EE, Helgen KM, McDonough MM et al (2017) A gene-tree test of the traditional taxonomy of American deer: the importance of voucher specimens, geographic data, and dense sampling. ZooKeys 697:87–131

    Article  Google Scholar 

  • Haag T, Santos AS, De Angelo C et al (2009) Development and testing of an optimized method for DNA-based identification of jaguar (Panthera onca) and puma (Puma concolor) faecal samples for use in ecological and genetic studies. Genetica 136:505–512

    Article  CAS  PubMed  Google Scholar 

  • Harcourt RG, Turner E, Hall A et al (2010) Effects of capture stress on free-ranging, reproductively active male Weddell seals. J Comp Physiol A 196(2):147–154

    Article  Google Scholar 

  • Harris H (1966) Enzyme polymorphism in man. Proc R Soc Lond B 164:298–310

    Article  CAS  PubMed  Google Scholar 

  • Heckeberg NS, Erpenbeck D, Wörheide G et al (2016) Systematic relationships of five newly sequenced cervid species. PeerJ 4:2307. https://doi.org/10.7717/peerj.2307

    Article  Google Scholar 

  • Higuchi R, von Beroldingen CH, Sensabaugh GF et al (1988) DNA typing from single hairs. Nature 332:543–546

    Article  CAS  PubMed  Google Scholar 

  • Hillis DM, Moritz C, Mable BK et al (1996) Molecular systematics. Sinauer Associates, Sunderland

    Google Scholar 

  • Hofreiter M, Serre D, Poinar HN et al (2001) Ancient DNA. Nat Rev Genet 2:353–359

    Article  CAS  PubMed  Google Scholar 

  • Höss M, Kohn M, Pääbo S et al (1992) Excrement analysis by PCR. Nature 359:199. https://doi.org/10.1038/359199a0

  • Igea de Castro J (2012) Desarrollo de nuevos marcadores genómicos y su aplicación a la filogenia y variabilidad genética de mamíferos. PhD Thesis, Universitat de Barcelona, Barcelona

    Google Scholar 

  • Immell D, Anthony RG (2008) Estimation of black bear abundance using a discrete DNA sampling device. J Wildl Manag 72:324–330

    Article  Google Scholar 

  • Ivošević B, Han Y-G, Cho Y et al (2015) The use of conservation drones in ecology and wildlife research. J Ecol Environ 38:113–118

    Article  Google Scholar 

  • Jeffery KJ, Abernethy KA, Tutin CEG et al (2007) Biological and environmental degradation of gorilla hair and microsatellite amplification success. Biol J Linn Soc 91:281–294

    Article  Google Scholar 

  • Jewell ZOE (2013) Effect of monitoring technique on quality of conservation science. Conserv Biol 27(3):501–508

    Article  PubMed  Google Scholar 

  • Kelly MJ, Betsch J, Wultsch C et al (2012) Noninvasive sampling for carnivores. In: Biotani L, Powell RA (eds) Carnivore ecology and conservation: a hand-book of techniques. Oxford University Press, Oxford, pp 47–67

    Chapter  Google Scholar 

  • Khanuja SPS, Shasany AK, Darokar MP et al (1999) Rapid isolation of DNA from dry and fresh samples of plants producing large amounts of secondary metabolites and essential oils. Plant Mol Biol 17:1–7

    Article  Google Scholar 

  • Kohn MH, Wayne RK (1997) Facts from faeces revisited. Trends Ecol Evol 6:223–227

    Article  Google Scholar 

  • Kraus RH, Vonholdt B, Cocchiararo B et al (2015) A single-nucleotide polymorphism-based approach for rapid and cost-effective genetic wolf monitoring in Europe based on noninvasively collected samples. Mol Ecol Resour 15(2):295–305

    Article  CAS  PubMed  Google Scholar 

  • Lee HC, Wei YH (2007) Oxidative stress, mitochondrial DNA mutation, and apoptosis in aging. Exp Biol Med 232:592–606

    CAS  Google Scholar 

  • Lewontin RC (1991) Twenty-five years ago in Genetics: electrophoresis in the development of evolutionary genetics: milestone or millstone? Genetics 128:657–662

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lewontin RC, Hubby JL (1966) A molecular approach to the study of genic heterozygosity in natural populations. 2. Amount of variation and degree of heterozygosity in natural populations of Drosophila pseudoobscura. Genetics 54:595–609

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lindsjö J, Fahlman Å, Törnqvist E (2016) Animal welfare from mouse to moose–implementing the principles of the 3Rs in wildlife research. J Wildl Dis 52(2s):S65–S77

    Article  PubMed  Google Scholar 

  • Luikart G, Zundel S, Rioux D et al (2008) Low genotyping error rates for microsatellite multiplexes and noninvasive fecal DNA samples from bighorn sheep. J Wildl Manag 72:299–304

    Article  Google Scholar 

  • Lukacs PM, Burnham KP (2005) Review of capture–recapture methods applicable to noninvasive genetic sampling. Mol Ecol 14:3909–3919

    Article  PubMed  Google Scholar 

  • Mannise N, Trovati RG, Duarte JMB et al (2018) Using non–invasive genetic techniques to assist in maned wolf conservation in a remnant fragment of the Brazilian Cerrado. Anim Biodivers Conserv 41(2):315–319

    Article  Google Scholar 

  • Mantellatto AMB, Caparroz R, Christofoletti MD et al (2017) Genetic diversity of the pampas deer (Ozotoceros bezoarticus) population in the Brazilian Pantanal assessed by combining fresh fecal DNA analysis and a set of heterologous microsatellite loci. Genet Mol Biol 40(4):774–780

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Marrero P, Fregel R, Cabrera VM et al (2009) Extraction of high-quality host DNA from feces and regurgitated seeds: a useful tool for vertebrate ecological studies. Biol Res 42:147–151

    Article  CAS  PubMed  Google Scholar 

  • McMahon CR, Hindell MA, Harcourt RG (2012) Publish or perish: why it’s important to publicise how, and if, research activities affect animals. Wildl Res 39(5):375–377

    Article  Google Scholar 

  • Miotto RA, Cervini M, Figueiredo MG et al (2011) Genetic diversity and population structure of pumas (Puma concolor) in southeastern Brazil: implications for conservation in a human-dominated landscape. Conserv Genet 12:1447–1455

    Article  Google Scholar 

  • Morin PA, Wallis J, Moore JJ et al (1994) Paternity exclusion in a community of wild chimpanzees using hypervariable simple sequence repeats. Mol Ecol 3(5):469–478

    Article  CAS  PubMed  Google Scholar 

  • Morin PA, Hedrick NM, Robertson KM et al (2007) Comparative mitochondrial and nuclear quantitative PCR of historical marine mammal tissue, bone, baleen, and tooth samples. Mol Ecol Notes 7:404–411

    Article  CAS  Google Scholar 

  • Mullis K, Faloona F, Scharf S et al (1986) Specific enzymatic amplification of DNA in vitro: the polymerase chain reaction. Cold Spring Harb Symp on Quant Biol 51:263–273

    Article  CAS  Google Scholar 

  • Murphy RH, Sites JW, Buth DG et al (1996) Proteins: isozyme electrophoresis. In: Hillis D, Moritz C, Mable B (eds) Molecular systematics, 2nd edn. Sinauer Associates, Inc, Sunderland, pp 1–120

    Google Scholar 

  • Myers N, Mittermeier RA, Mittermeier CG et al (2000) Biodiversity hotspots for conservation priorities. Nature 403:853–858

    Article  CAS  PubMed  Google Scholar 

  • Nagata J, Aramilev VV, Belozor A et al (2005) Fecal genetic analysis using PCR-RFLP of cytochrome b to identify sympatric carnivores, the tiger Panthera tigris and the leopard Panthera pardus, in far eastern Russia. Conserv Genet 6(5):863–866

    Article  Google Scholar 

  • Nardelli M, Túnez JI (2017) Aportes de la genética de la conservación al estudio de los mamíferos neotropicales: revisión y análisis crítico. Ecol Austral 27:421–436

    Article  Google Scholar 

  • Nardelli M, Túnez JI, Centrón D et al (2011) Técnicas de muestreo no invasivas aplicadas al estudio genético de mamíferos. Interciencia 36:404–411

    Google Scholar 

  • Nsubuga AM, Robbins MM, Roeder AD et al (2004) Factors affecting the amount of genomic DNA extracted from ape faeces and the identification of an improved sample storage method. Mol Ecol 13:2089–2094

    Article  CAS  PubMed  Google Scholar 

  • Nuvoli S, Burrai GP, Secci F et al (2014) Capture myopathy in a corsican Red Deer Cervus elaphus corsicanus (Ungulata: Cervidae). Ital J Zool 81(3):457–462

    Article  Google Scholar 

  • Olson DM, Dinerstein E (2002) The Global 200: Priority ecoregions for global conservation. Ann Missouri Bot 89:199–224

    Article  Google Scholar 

  • Palomares F, Adrados B, Zanin M et al (2017) A non-invasive faecal survey for the study of spatial ecology and kinship of solitary felids in the Viruá National Park, Amazon Basin. Mamm Res 62:241–249

    Article  Google Scholar 

  • Park HC, Han TY, Kim DC et al (2011) Individual identification and sex determination of Eurasian otters (Lutra lutra) in Daegu city based on genetic analysis of otter spraint. Genes Genom 33:653–657

    Article  Google Scholar 

  • Pauli JN, Whiteman JP, Riley MD et al (2010) Defining noninvasive approaches for sampling of vertebrates. Conserv Biol 24:349–352

    Article  PubMed  Google Scholar 

  • Peist R, Honsel D, Twieling G et al (2001) PCR inhibitors in plant DNA preparations. QIAGEN News 3:7–9

    Google Scholar 

  • Peralta DM, Ibañez EA, Lucero S et al (2019) A new minimally-invasive and inexpensive sampling method for genetic studies in pinnipeds. Mammal Res 65:11–18

    Article  Google Scholar 

  • Piggott MP, Taylor AC (2003) Remote collection of animal DNA and its applications in conservation management and understanding the population biology of rare and cryptic species. Wildl Res 30(1):1–13

    Article  Google Scholar 

  • Powell RA, Proulx G (2003) Trapping and marking terrestrial mammals for research: integrating ethics, performance criteria, techniques, and common sense. ILAR J 44:259–276

    Article  CAS  PubMed  Google Scholar 

  • Robinson CV, Nuuttila HK (2020) Don’t Hold Your Breath: Limited DNA Capture Using Non-Invasive Blow Sampling for Small Cetaceans. Aquat Mamm 46:32–41

    Article  Google Scholar 

  • Roon DA, Waits LP, Kendall KC (2003) A quantitative evaluation of two methods for preserving hair samples. Mol Ecol Notes 3:163–166

    Article  CAS  Google Scholar 

  • Ruiz-García M, Luengas-Villamil K, Pinedo-Castro M et al (2016) Continuous Miocene, Pliocene and Pleistocene influences on mitochondrial diversification of the capybara (Hydrochoerus hydrochoeris; Hydrochoeridae, Rodentia): incapacity to determine exclusive hypotheses on the origins of the Amazon and Orinoco diversity. J Phylogenetics Evol Biol 4(2):166. https://doi.org/10.4172/2329-9002.1000166

    Article  Google Scholar 

  • Ruiz-González A, Rubines J, Berdión O et al (2008) A non-invasive genetic method to identify the sympatric mustelids pine marten (Martes martes) and stone marten (Martes foina): preliminary distribution survey on the northern Iberian Peninsula. Eur J Wildl Res 54:253–261

    Article  Google Scholar 

  • Russell WMS, Burch RL (1959) The principles of humane experimental technique. Methuen & Co, Ltd, London

    Google Scholar 

  • Russo D, Ancillotto L, Hughes AC et al (2017) Collection of voucher specimens for bat research: conservation, ethical implications, reduction, and alternatives. Mamm Rev 47(4):237–246

    Article  Google Scholar 

  • Sastre N, Francino O, Lampreave G et al (2009) Sex identification of wolf (Canis lupus) using non-invasive samples. Conserv Genet 10:555–558

    Article  CAS  Google Scholar 

  • Schwartz MK, Monfort SL (2008) Genetic and endocrine tools for carnivore surveys. In: Long RA, MacKay P, Ray JC et al (eds) Noninvasive survey methods for North American carnivores. Island Press, Washington DC, pp 228–250

    Google Scholar 

  • Schwartz MK, Luikart G, Waples RS (2007) Genetic monitoring as a promising tool for conservation and management. Trends Ecol Evol 22:25–33

    Article  PubMed  Google Scholar 

  • Secchi ER, Wang JY, Murray BW et al (1998) Population differentiation in the franciscana (Pontoporia blainvillei) from two geographic locations in Brazil as determined from mitochondrial DNA control region sequences. Can J Zool 76:1622–1627

    Article  CAS  Google Scholar 

  • Sloane MA, Sunnucks P, Alpers D et al (2000) Highly reliable genetic identification of individual hairy nosed wombats from single remotely collected hairs: a feasible censusing method. Mol Ecol 9:1233–1240

    Article  CAS  PubMed  Google Scholar 

  • Smith DA, Ralls K, Hurt A et al (2006) Assessing reliability of microsatellite genotypes from kit fox faecal samples using genetic and GIS analyses. Mol Ecol 15:387–406

    Article  CAS  PubMed  Google Scholar 

  • Snyder-Mackler N, Majoros WH, Yuan ML et al (2016) Efficient genome-wide sequencing and low-coverage pedigree analysis from noninvasively collected samples. Genetics 203(2):699–714

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Souza ASMC, Saranholi BH, Crawshaw PG Jr et al (2017) Re-discovering jaguar in the remaining coastal Atlantic Forest in southeastern Brazil by non-invasive DNA analysis. Biota Neotrop 17(2):e20170358. https://doi.org/10.1590/1676-0611-bn-2017-0358

    Article  Google Scholar 

  • Stenglein JL, Waits LP, Ausband DE et al (2010) Efficient, noninvasive genetic sampling for monitoring reintroduced wolves. J Wildl Manag 74(5):1050–1058

    Article  Google Scholar 

  • Taberlet P, Bouvet J (1992) Génétique de l’Ours brun des Pyrenees (Ursus arctos): Premiers résultats. C R Acad Sci 314:15–21

    CAS  Google Scholar 

  • Taberlet P, Luikart G (1999) Non-invasive genetic sampling and individual identification. Biol J Linn Soc 68:41–55

    Article  Google Scholar 

  • Taberlet P, Griffin S, Goossens B et al (1996) Reliable genotyping of samples with very low DNA quantities using PCR. Nucleic Acids Res 24(16):3189–3194

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Taberlet P, Waits LP, Luikart G (1999) Noninvasive genetic sampling: look before you leap. Trends Ecol Evol 14(8):323–327

    Article  CAS  PubMed  Google Scholar 

  • Thompson W (2013) Sampling rare or elusive species: concepts, designs, and techniques for estimating population parameters. Island Press, Washington DC

    Google Scholar 

  • von Thaden A, Nowak C, Tiesmeyer A et al (2020) Applying genomic data in wildlife monitoring: development guidelines for genotyping degraded samples with reduced single nucleotide polymorphism panels. Mol Ecol Resour 20(3):662–680. https://doi.org/10.1111/1755-0998.13136

    Article  Google Scholar 

  • Vucetich JA, Nelson MP (2007) What are 60 warblers worth? Killing in the name of conservation. Oikos 116(8):1267–1278

    Article  Google Scholar 

  • Waits LP, Paetkau D (2005) Noninvasive Genetic Sampling Tools for Wildlife Biologists: A Review of Applications and Recommendations for Accurate Data Collection. J Wildl Manag 69:1419–1433

    Article  Google Scholar 

  • Waugh CA, Monamy V (2016) Opposing lethal wildlife research when nonlethal methods exist: scientific whaling as a case study. J Fish Wild Manag 7(1):231–236

    Article  Google Scholar 

  • Weber DS, Stewart BS, Lehman N (2004) Genetic consequences of a severe population bottleneck in the Guadalupe fur seal (Arctocephalus townsendi). J Hered 95:144–153

    Article  CAS  PubMed  Google Scholar 

  • Wilson RP, McMahon CR (2006) Measuring devices on wild animals: what constitutes acceptable practice? Front Ecol Environ 4(3):147–154

    Article  Google Scholar 

  • Zemanova MA (2017) More training in animal ethics needed for European biologists. Bioscience 67(3):301–305

    Article  Google Scholar 

  • Zemanova MA (2019) Poor implementation of non-invasive sampling in wildlife genetics studies. Rethink Ecol 4:119–132. https://doi.org/10.3897/rethinkingecology.4.32751

    Article  Google Scholar 

  • Zemanova MA (2020) Towards more compassionate wildlife research through the 3Rs principles: moving from invasive to non-invasive methods. Wildlife Biol 2020(1). https://doi.org/10.2981/wlb.00607

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Byrne, M.S., Peralta, D.M., Ibañez, E.A., Nardelli, M., Túnez, J.I. (2021). Non-invasive Sampling Techniques Applied to Conservation Genetic Studies in Mammals. In: Nardelli, M., Túnez, J.I. (eds) Molecular Ecology and Conservation Genetics of Neotropical Mammals. Springer, Cham. https://doi.org/10.1007/978-3-030-65606-5_4

Download citation

Publish with us

Policies and ethics