Skip to main content

The Use of Molecular Markers in Neotropical Mammal Conservation

  • Chapter
  • First Online:
Molecular Ecology and Conservation Genetics of Neotropical Mammals

Abstract

In the last decades, molecular biology has developed techniques and methodologies for genetic analysis that have become very useful tools for a wide variety of studies in conservation. In this chapter, we will go through the uses and scopes of molecular markers concerning some of the most interesting topics in the conservation of mammals. We will carry out our review starting with the contributions of molecular markers from the individual level up to the species level, including forensic DNA, poaching and illegal traffic, inbreeding, mating systems, dispersal patterns, phylogeography, identification of Conservation Units and Evolutionarily Significant Units, gene flow and biological corridors, rewilding and reintroduction, ex-situ conservation, and identification of cryptic species. Finally, we will review some of the contributions from the use of the most modern techniques of genetic analysis such as Next-Generation Sequencing and the analysis of environmental and ancient DNA.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 139.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 179.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 179.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  • Abba AM, Cassini GH, Cassini MH et al (2011) Historia natural del piche llorón Chaetophractus vellerosus (Mammalia: Xenarthra: Dasypodidae). Rev Chil Hist Nat 84:51–64

    Article  Google Scholar 

  • Abba AM, Camino M, Torres RM et al (2019) Chaetophractus vellerosus. In: SAyDS–SAREM (eds) Categorización 2019 de los mamíferos de Argentina según su riesgo de extinción. Lista Roja de los mamíferos de Argentina. Digital versión: https://cma.sarem.org.ar/es/especie-nativa/chaetophractus-vellerosus

  • Adams CIM, Knapp M, Gemmell NJ et al (2019) Beyond biodiversity: can environmental DNA (eDNA) cut it as a population genetics tool? Gene 10:192

    Article  CAS  Google Scholar 

  • Allendorf FW (2017) Genetics and the conservation of natural populations: allozymes to genomes. Mol Ecol 26:420–430

    Article  CAS  PubMed  Google Scholar 

  • Allendorf FW, Leary RF (1986) Heterozygosity and fitness in natural populations of animals. In: Soulé ME (ed) Conservation Biology: the science of scarcity and diversity. Sinauer Associates Inc, Sunderland, pp 57–76

    Google Scholar 

  • Allendorf FW, Hohenlohe PA, Luikart G (2010) Genomics and the future of conservation genetics. Nat Rev Genet 11:697–709

    Article  CAS  PubMed  Google Scholar 

  • Andreassen HP, Halle S, Ims RA (1996) Optimal width of movement corridors for root voles: not too narrow and not too wide. J Appl Ecol 33:63–70

    Article  Google Scholar 

  • Avise JC (1995) Mitochondrial DNA polymorphisms and a connection between genetics and demography of relevance to conservation. Conserv Biol 9:686–690

    Article  Google Scholar 

  • Avise JC (2000) Phylogeography: the history and formation of species. Harvard University Press, Cambridge

    Book  Google Scholar 

  • Avise JC (2004) Molecular markers, natural history, and evolution. Sinauer Associates Inc., Sunderland

    Google Scholar 

  • Baker CS, Steel D, Nieukirk S et al (2018) Environmental DNA (eDNA) from the wake of the whales: droplet digital PCR for detection and species identification. Front Mar Sci 5:133

    Article  Google Scholar 

  • Barbarán FR (2000) Recursos alimenticios derivados de la caza, pesca y recolección de los Wichi del Río Pilcomayo (Provincia de Salta, Argentina). In: Cabrera E, Mercolli C, Resquin R (eds) Manejo de Fauna Silvestre en Amazonia y Latinoamérica. Ricor Graphic S.A, Asunción, pp 507–527

    Google Scholar 

  • Beier P, Majka DR, Spencer WD (2008) Forks in the road: choices in procedures for designing wildland linkages. Conserv Biol 22:836–851

    Article  PubMed  Google Scholar 

  • Bellis C, Ashton KJ, Freney L et al (2003) A molecular genetic approach for forensic animal species identification. Forensic Sci Int 134:99–108

    Article  CAS  PubMed  Google Scholar 

  • Bernatchez L (1995) A role for molecular systematics in defining evolutionarily significant units (ESU) in fishes. Am Fish Soc Symp 17:114–132

    Google Scholar 

  • Bickford D, Lohman DJ, Sodhi NS et al (2007) Cryptic species as a window on diversity and conservation. Trends Ecol Evol 22:148–155

    Article  PubMed  Google Scholar 

  • Bordino P, Mackay AI, Werner TB et al (2013) Franciscana bycatch is not reduced by acoustically reflective or physically stiffened gillnets. Endang Species Res 21:1–12

    Article  Google Scholar 

  • Boussarie G, Bakker J, Wangensteen OS et al (2018) Environmental DNA illuminates the dark diversity of sharks. Sci Adv 4:eaap9661

    Article  PubMed  PubMed Central  Google Scholar 

  • Bradley RD, Baker RJ (2001) A test of the Genetic Species Concept: cytochrome-b sequences and mammals. J Mammal 82:960–973

    Article  Google Scholar 

  • Brodie JF, Giordano AJ, Dickson B et al (2015) Evaluating multispecies landscape connectivity in a threatened tropical mammal community. Conserv Biol 29:122–132

    Article  PubMed  Google Scholar 

  • Brown JH, Kodric-Brown A (1977) Turnover rates in insular biogeography: effect of immigration on extinction. Ecology 58:445–449

    Article  Google Scholar 

  • Burton RS (2009) Molecular markers, natural history, and conservation of marine animals. Bioscience 59:831–840

    Article  Google Scholar 

  • Byrne MS, Quintana RD, Bolkovic MS et al (2015) The role of river drainages in shaping the genetic structure of capybara populations. Genetica 143:645–656

    Article  PubMed  Google Scholar 

  • Byrne MS, Quintana RD, Bolkovic ML et al (2019) Population genetics of the capybara, Hydrochoerus hydrochaeris, in the Chaco-pampean region. Mammal Biol 96:14–22

    Article  Google Scholar 

  • Carvalho CBV (2014) DNA barcoding in forensic vertebrate species identification. Braz J Forensic Sci Med Law Bioeth 4:12–23

    Article  Google Scholar 

  • Cerca J, Meyer C, Stateczny D et al (2019) Deceleration of morphological evolution in a cryptic species complex and its link to paleontological stasis. Evolution 74:116–131

    Article  PubMed  Google Scholar 

  • Cleary KA, Waits LP, Finegan B (2017) Comparative landscape genetics of two frugivorous bats in a biological corridor undergoing agricultural intensification. Mol Ecol 26:4603–4617

    Article  PubMed  Google Scholar 

  • Cliffe RN, Robinson CV, Whittaker BA et al (2020) Genetic divergence and evidence of human-mediated translocation of two-fingered sloths (Choloepus hoffmanni) in Costa Rica. Evol Appl 00:1–10. https://doi.org/10.1111/eva.13036

    Article  CAS  Google Scholar 

  • Costa Urrutia P, Abud C, Secchi ER et al (2012) Population genetic structure and social kin associations of Franciscana Dolphin, Pontoporia blainvillei. J Hered 103:92–102

    Article  PubMed  Google Scholar 

  • Cunha HA, Medeiros BV, Barbosa LA et al (2014) Population structure of the endangered franciscana dolphin (Pontoporia blainvillei): reassessing management units. PLoS One 9:e85633

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Darden SK, Croft DP (2008) Male harassment drives females to alter habitat use and leads to segregation of the sexes. Biol Lett 4:449–451

    Article  PubMed  PubMed Central  Google Scholar 

  • De Angelo C, Paviolo A, Wiegand T et al (2013) Understanding species persistence for defining conservation actions: a management landscape for jaguars in the Atlantic Forest. Biol Conserv 159:422–433

    Article  Google Scholar 

  • de Knijff P (2019) From next generation sequencing to now generation sequencing in forensics. Forensic Sci Int Genet 38:175–180

    Article  PubMed  CAS  Google Scholar 

  • de Oliveira LR, Gehara MCM, Fraga LD et al (2017) Ancient female philopatry, asymmetric male gene flow, and synchronous population expansion support the influence of climatic oscillations on the evolution of South American sea lion (Otaria flavescens). PLoS One 12:e0179442

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • DeMatteo KE, Rinas MA, Sede MM et al (2009) Detection dogs: an effective technique for bush dog surveys. J Wildl Manag 73:1436–1440

    Article  Google Scholar 

  • DeMatteo KE, Rinas MA, Argüelles CF et al (2014a) Using detection dogs and genetic analyses of scat to expand knowledge and assist felid conservation in Misiones, Argentina. Integr Zool 9:623–639

    Article  PubMed  Google Scholar 

  • DeMatteo KE, Rinas MA, Argüelles CF et al (2014b) Noninvasive techniques provide novel insights for the elusive bush dog (Speothos venaticus). Wildl Soc Bull 38:862–873

    Article  Google Scholar 

  • DeMatteo KE, Rinas MA, Zurano JP et al (2017) Using niche-modelling and species-specific cost analyses to determine a multispecies corridor in a fragmented landscape. PLoS One 12:e0183648

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Di Rocco F, Posik DM, Ripoli MV et al (2011) South American camelid illegal traffic detection by means of molecular markers. Legal Med 13:289–292

    Article  PubMed  CAS  Google Scholar 

  • Eizirik E, Haag T, Santos AS et al (2008) Jaguar conservation genetics. CAT News, Special Issue 4:31–34

    Google Scholar 

  • Ekblom R, Galindo J (2011) Applications of next generation sequencing in molecular ecology of non-model organisms. Heredity 107:1–15

    Article  CAS  PubMed  Google Scholar 

  • Escalante AE, Barbolla LJ, Ramírez-Barahona S et al (2014) The study of biodiversity in the era of massive sequencing. Rev Mex Biodivers 85:1249–1264

    Article  Google Scholar 

  • Escoda-Assens L (2018) Applications of next-generation sequencing in conservation genomics: kinship analysis and dispersal patterns. PhD Thesis, Universitat de Barcelona, Barcelona

    Google Scholar 

  • Etter PD, Johnson E (2012) RAD paired-end sequencing for local de novo assembly and SNP discovery in non-model organisms. Methods Mol Biol 888:135–151

    Article  PubMed  Google Scholar 

  • Fernandez FAS, Rheingantz ML, Genes L et al (2017) Rewilding the Atlantic Forest: restoring the fauna and ecological interactions of a protected area. Perspec Ecol Conserv 15:308–314

    Google Scholar 

  • Filippi-Codaccioni O, Beugin MP, de Vienne DM et al (2018) Coexistence of two sympatric cryptic bat species in French Guiana: insights from genetic, acoustic and ecological data. BMC Evol Biol 18:175

    Article  PubMed  PubMed Central  Google Scholar 

  • Forcina G, Leonard JA (2020) Tools for monitoring genetic diversity in mammals: past, present, and future. In: Ortega J, Maldonado JE (eds) Conservation genetics in mammals: integrative research using novel approaches. Springer, Cham, pp 13–27

    Chapter  Google Scholar 

  • Frankham R (2008) Genetic adaptation to captivity in species conservation programs. Mol Ecol 17:325–333

    Article  PubMed  Google Scholar 

  • Frankham R, Ballou JD, Briscoe DA (2002) Introduction to conservation genetics. Cambridge University Press, Cambridge

    Book  Google Scholar 

  • Frankham RJ, Ballou JD, Briscoe DA (2010) Introduction to Conservation Genetics, 2nd edn. Cambridge University Press, Cambridge

    Book  Google Scholar 

  • Frantz LAF, Mullin VE, Pionnier-Capitan M et al (2016) Genomic and archaeological evidence suggest a dual origin of domestic dogs. Science 352:1228–1231

    Article  CAS  PubMed  Google Scholar 

  • Fraser DJ, Bernatchez L (2001) Adaptive evolutionary conservation: towards a unified concept to defining conservation units. Mol Ecol 10:2741–2752

    Article  CAS  PubMed  Google Scholar 

  • Freeland JR (2005) Molecular Ecology. Wiley, Chichester

    Google Scholar 

  • Fuentes-Hurtado M, Marín JC, González-Acuña D et al (2011) Molecular divergence between insular and continental Pudu deer (Pudu puda) populations in the Chilean Patagonia. Stud Neotrop Fauna E 46:23–33

    Article  Google Scholar 

  • Galetti M, Root-Bernstein M, Svenning JC (2017) Challenges and opportunities for rewilding South American landscapes. Perspec Ecol Conserv 15:245–247

    Google Scholar 

  • García D, Priotto G (2009) Educación ambiental. Secretaría de Ambiente y Desarrollo Sustentable, Buenos Aires

    Google Scholar 

  • Gariboldi MC, Túnez JI, Dejean CB et al (2015) Population genetics of Franciscana Dolphins (Pontoporia blainvillei): introducing a new population from the southern edge of their distribution. PLoS One 10:e0132854

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Gariboldi MC, Túnez JI, Failla M et al (2016) Patterns of population structure at microsatellite and mitochondrial DNA markers in the franciscana dolphin (Pontoporia blainvillei). Ecol Evol 6:8764–8776

    Article  PubMed  PubMed Central  Google Scholar 

  • Gilpin MF, Soulé ME (1986) Minimum viable populations: processes of species extinction. In: Soulé ME (ed) Conservation Biology: the science of scarcity and diversity. Sinauer Associates Inc., Sunderland, pp 19–34

    Google Scholar 

  • Giraudo AR, Abramson RR (1998) Usos de la fauna silvestre por los pobladores rurales de la selva paranaense de misiones. Tipos de uso, influencia de la fragmentación y posibilidades de manejo sustentable. Boletín Técnico de la Fundación Vida Silvestre Argentina 47:1–41

    Google Scholar 

  • Gómez JJ, Túnez JI, Fracassi N et al (2014) Habitat suitability and anthropogenic correlates of Neotropical river otter (Lontra longicaudis) distribution. J Mammal 95:824–833

    Article  Google Scholar 

  • Goncalves da Silva A, Lalonde DR, Quse V et al (2010) Genetic approaches refine ex situ Lowland Tapir (Tapirus terrestris) conservation. J Hered 101:581–590

    Article  CAS  PubMed  Google Scholar 

  • González BA, Agapito AM, Novoa-Muñoz F et al (2020) Utility of genetic variation in coat color genes to distinguish wild, domestic and hybrid South American camelids for forensic and judicial applications. Forensic Sci Int Genet 45:102226

    Article  PubMed  CAS  Google Scholar 

  • Goodwin S, McPherson JD, McCombie R (2016) Coming of age: ten years of next generation sequencing technologies. Nat Rev Genet 17:333–351

    Article  CAS  PubMed  Google Scholar 

  • Graham RW (1988) The role of climatic change in the design of biological reserves: the paleoecological perspective for conservation biology. Conserv Biol 2:391–394

    Article  Google Scholar 

  • Harris H (1966) Enzyme polymorphism in man. Proc R Soc B Biol Sci 164:298–310

    CAS  Google Scholar 

  • Hebert PDN, Cywinska A, Ball SL et al (2003a) Biological identifications through DNA barcodes. Proc R Soc B Biol Sci 270:313–321

    Article  CAS  Google Scholar 

  • Hebert PDN, Ratnasingham S, de Waard JR (2003b) Barcoding animal life: cytochrome c oxidase subunit 1 divergences among closely related species. Proc R Soc B Biol Sci 270:S96–S99

    Article  CAS  Google Scholar 

  • Heintzman PD, Soares AER, Chang D et al (2006) Paleogenomics. Rev Cell Biol Mol Med 1:243–267

    Google Scholar 

  • Hilty JA, Brooks C, Heaton E et al (2006) Forecasting the effect of land-use change on native and non-native mammalian predator distributions. Biodivers Conserv 15:2853–2871

    Article  Google Scholar 

  • Hohenlohe PA, Bassham S, Etter PD et al (2010) Population genomics of parallel adaptation in threespine stickleback using sequenced RAD tags. PLoS Genet 6:e1000862

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Hummel S (2015) Ancient DNA. In: Henke W, Tattarsall I (eds) Handbook of Paleoanthropology. Springer, Berlin

    Google Scholar 

  • Iyengar A (2014) Forensic DNA analysis for animal protection and biodiversity conservation: a review. J Nat Conserv 22:195–205

    Article  Google Scholar 

  • Jamieson AG (2015) Significance of population genetics for managing small natural and reintroduced populations in New Zealand. N Z J Ecol 39:1–18

    Google Scholar 

  • Jimenez-Gonzalez S, Ruiz-García M, Maldonado J et al (2017) Genetic characterization of jaguars (Panthera onca) in captivity in zoological parks of Colombia. In: Shrivastav AB, Singh KP (eds) Big cats. InTech Open Science, Rijeka, pp 73–91

    Google Scholar 

  • Johnson AS (1989) The thin green line: riparian corridors and endangered species in Arizona and New Mexico. In: Mackintosh G (ed) Preserving communities and corridors. Defenders of Wildlife, Washington, pp 35–36

    Google Scholar 

  • Johnson WE, Slattery JP, Eizirik E et al (1999) Disparate phylogeographic patterns of molecular genetic variation in four closely related South American small cat species. Mol Ecol 8:S79–S94

    Article  CAS  PubMed  Google Scholar 

  • Johnson RN, Wilson-Wilde L, Linacre A (2014) Current and future directions of DNA in wildlife forensic science. Forensic Sci Int Genet 10:1–11

    Article  CAS  PubMed  Google Scholar 

  • Karanth KP (2017) Species complex, species concepts and characterization of cryptic diversity: vignettes from Indian systems. Curr Sci 112:1320–1324

    Google Scholar 

  • Knowlton N (1993) Sibling species in the sea. Annu Rev Ecol Syst 24:189–216

    Article  Google Scholar 

  • La Haye MJJ, Reiners TE, Raedts R et al (2017) Genetic monitoring to evaluate reintroduction attempts of a highly endangered rodent. Conserv Genet 18:877–892

    Article  CAS  Google Scholar 

  • Lassance JM, Svensson GP, Kozlov V et al (2019) Pheromones and barcoding delimit boundaries between cryptic species in the primitive moth genus Eriocrania (Lepidoptera: Eriocraniidae). J Chem Ecol 45:429–439

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Leonard JA (2008) Ancient DNA applications for wildlife conservation. Mol Ecol 17:4186–4196

    Article  CAS  PubMed  Google Scholar 

  • Lepage BA, Basinger JF (1995) Evolutionary history of the genus Pseudolarix Gordon (Pinaceae). Int J Plant Sci 156:910–950

    Article  Google Scholar 

  • Leslie MS, Morin PA (2016) Using genome-wide SNPs to detect structure in high-diversity and low-divergence populations of severely impacted eastern tropical Pacific spinner (Stenella longirostris) and pantropical spotted dolphins (S. attenuata). Front Mar Sci 3:253

    Article  Google Scholar 

  • Leslie MS, Archer FI, Morin PA (2019) Mitogenomic differentiation in spinner (Stenella longirostris) and pantropical spotted dolphins (S. attenuata) from the eastern tropical Pacific Ocean. Mar Mamm Sci 35:522–551

    Article  CAS  Google Scholar 

  • Lewontin RC, Hubby JL (1966) A molecular approach to the study of genic heterozygosity in natural populations. 2. Amount of variation and degree of heterozygosity in natural populations of Drosophila pseudoobscura. Genetics 54:595–609

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Li G, Davis BW, Eizirik E et al (2016) Phylogenomic evidence for ancient hybridization in the genomes of living cats (Felidae). Genome Res 26:1–11

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Luck GW, Daily GC, Ehrlich PR (2003) Population diversity and ecosystem services. Trends Ecol Evol 18:331–336

    Article  Google Scholar 

  • Luikart G, England PR, Tallmon D et al (2003) The power and promise of population genomics: from genotyping to genome typing. Nat Rev Genet 4:981–994

    Article  CAS  PubMed  Google Scholar 

  • Malukiewicz J, Guschanski K, Grativol AD et al (2017) Application of PE-RADSeq to the study of genomic diversity and divergence of two Brazilian marmoset species (Callithrix jacchus and C. penicillata). Am J Primatol 79:e22587

    Article  CAS  Google Scholar 

  • Manel S, Schwartz MK, Luikart G et al (2003) Landscape genetics: combining landscape ecology and population genetics. Trends Ecol Evol 18:189–197

    Article  Google Scholar 

  • Mannise N, Cosse M, González S et al (2017) Maned wolves retain moderate levels of genetic diversity and gene flow despite drastic habitat fragmentation. Endang Spec Res 34:449–462

    Article  Google Scholar 

  • Marín JC, Saucedo CE, Corti P et al (2009) Aplication of DNA forensic techniques for identifying poached guanacos (Lama guanicoe) in Chilean Patagonia. J Forensic Sci 54:1073–1076

    Article  PubMed  CAS  Google Scholar 

  • Meagher S, Penn DJ, Potts WK (2000) Male-male competition magnifies inbreeding depression in wild house mice. Proc Natl Acad Sci U S A 97:3324–3329

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Méndez M, Rosenbaum HC, Bordino P (2008) Conservation genetics of the franciscana dolphin in Northern Argentina: population structure, by-catch impacts, and management implications. Conserv Genet 9:419–435

    Article  Google Scholar 

  • Méndez M, Rosenbaum HC, Subramaniam A et al (2010) Isolation by environmental distance in mobile marine species: Molecular ecology of franciscana dolphins at their southern range. Mol Ecol 19:2212–2228

    Article  PubMed  CAS  Google Scholar 

  • Moritz C (1994) Defining evolutionarily significant units for conservation. Trends Ecol Evol 9:373–375

    Article  CAS  PubMed  Google Scholar 

  • Nardelli M, Túnez JI (2017) Aportes de la genética de la conservación al estudio de los mamíferos neotropicales: revisión y análisis crítico. Ecol Austral 27:421–436

    Article  Google Scholar 

  • Nardelli M, Ibañez EA, Dobler D et al (2016) Genetic structuring in a relictual population of screaming hairy armadillo (Chaetophractus vellerosus) in Argentina revealed by a set of novel microsatellite loci. Genetica 144:469–476

    Article  PubMed  Google Scholar 

  • Nardelli M, Ibañez EA, Dobler D et al (2020) Genetic approach reveals a polygynous-polyandrous mating system and no social organization in a small and isolated population of the screaming hairy armadillo, Chaetophractus vellerosus. Genetica 148:125–133

    Article  PubMed  Google Scholar 

  • Negri MF, Denuncio P, Panebianco MV et al (2012) Bycatch of franciscana dolphins Pontoporia blainvillei and the dynamic of artisanal fisheries in the species’ southernmost area of distribution. Braz J Oceanogr 60:149–158

    Article  Google Scholar 

  • Negri MF, Cappozzo HL, Túnez JI (2016) Genetic diversity and population structure of the franciscana dolphin, Pontoporia blainvillei, in Southern Buenos Aires, Argentina. N Z J Mar Freshw Res 50:326–338

    Article  CAS  Google Scholar 

  • Nellemann C, Henriksen R, Kreilhuber A et al (2016) The rise of environmental crime: a growing threat to natural resources, peace, development and security. United Nations Environment Programme (UNEP), Nairobi

    Google Scholar 

  • Newcomer SD, Zeh JA, Zeh DW (1999) Genetic benefits enhance the reproductive success of polyandrous females. Proc Natl Acad Sci U S A 96:10236–10241

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Nogués-Bravo D, Simberloff D, Rahbek C et al (2016) Rewilding is the new Pandora’s box in conservation. Curr Biol 26:R83–R101

    Article  CAS  Google Scholar 

  • O’Grady JJ, Brook BW, Reed DH et al (2006) Realistic levels of inbreeding depression strongly affect extinction risk in wild populations. Biol Conserv 133:42–51

    Article  Google Scholar 

  • Ogden ROB (2011) Unlocking the potential of genomic technologies for wildlife forensics. Mol Ecol Res 11:109–116

    Article  Google Scholar 

  • Oliveira CG, Gaiotto FA, Costa MA et al (2011) Molecular genetic analysis of the yellow-breasted capuchin monkey: recommendations for ex situ conservation. Genet Mol Res 10:1471–1478

    Article  CAS  PubMed  Google Scholar 

  • Ortega J, Maldonado JE (eds) (2020) Conservation genetics in mammals: integrative research using novel approaches. Springer, Cham

    Google Scholar 

  • Pacioni C, Wayne AF, Spencer PBS (2013) Genetic outcomes from the translocations of the critically endangered woylie. Curr Zool 59:294–310

    Article  Google Scholar 

  • Parsons KM, Everett M, Dahlheim M et al (2018) Water, water everywhere: environmental DNA can unlock population structure in elusive marine species. R Soc Open Sci 5:180537

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Pascoe S, Okey TA, Griffiths S (2008) Economic and ecosystem impacts of illegal, unregulated and unreported (IUU) fishing in Northern Australia. Aus J Agric Res Econ 52:433–452

    Article  Google Scholar 

  • Paterson ID, Mangan R, Downie DA et al (2016) Two in one: cryptic species discovered in biological control agent populations using molecular data and crossbreeding experiments. Ecol Evol 6:6139–6150

    Article  PubMed  PubMed Central  Google Scholar 

  • Paula RC, DeMatteo K (2015) Chrysocyon brachyurus (errata version published in 2016). In: The IUCN red list of threatened species 2015: e.T4819A88135664. https://doi.org/10.2305/IUCN.UK.2015-4.RLTS.T4819A82316878.en. Accessed 19 Aug 2020

  • Peralta DM (2020) Ecología molecular y filogeografía del león marino sudamericano, Otaria flavescens. PhD Thesis, Universidad de Buenos Aires, Buenos Aires

    Google Scholar 

  • Perault DR, Lomolino MV (2000) Corridors and mammal community structure across a fragmented, old growth forest landscape. Ecol Monogr 70:401–422

    Article  Google Scholar 

  • Peterson BK, Weber JN, Kay EH et al (2012) Double digest RADseq: an inexpensive method for de novo SNP discovery and genotyping in model and non-model species. PLoS One 7:e37135

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Pevsner J (2015) Bioinformatics and functional genomics, 3rd edn. Wiley-Blackwell, New York

    Google Scholar 

  • Pfenninger M, Schwenk K (2007) Cryptic animal species are homogeneously distributed among taxa and biogeographical regions. BMC Evol Biol 7:121

    Article  PubMed  PubMed Central  Google Scholar 

  • Pickles RSA, Groombridge JJ, Rojas VZ et al (2011) Evolutionary history and identification of conservation units in the giant otter, Pteronura brasiliensis. Mol Phylogenet Evol 61:616–627

    Article  CAS  PubMed  Google Scholar 

  • Pimm SL, Dollar L, Bass OL Jr (2006) The genetic rescue of the Florida panther. Anim Conserv 9:115–122

    Article  Google Scholar 

  • Port JA, O’Donnell JL, Romero-Maraccini OC et al (2016) Assessing vertebrate biodiversity in a kelp forest ecosystem using environmental DNA. Mol Ecol 25:527–541

    Article  CAS  PubMed  Google Scholar 

  • Poulin R, Pérez-Ponce de León G (2017) Global analysis reveals that cryptic diversity is linked with habitat but not mode of life. J Evol Biol 30:641–649

    Article  CAS  PubMed  Google Scholar 

  • Reidenbach KR, Neafsey DE, Costantini C et al (2012) Patterns of genomic differentiation between ecologically differentiated M and S forms of Anopheles gambiae in West and Central Africa. Genome Biol Evol 4:1202–1212

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Ribeiro MC, Metzger JP, Martensen AC et al (2009) The Brazilian Atlantic Forest: how much is left, and how is the remaining forest distributed? Implications for conservation. Biol Conserv 142:1141–1153

    Article  Google Scholar 

  • Rieseberg L, Vines T, Kane N (2011) Editorial - 20 years of molecular ecology. Mol Ecol 20:1–21

    Article  Google Scholar 

  • Rissler L, Apodaca JJ (2007) Adding more ecology into species delimitation: ecological niche models and phylogeography help define cryptic species in the black salamander (Aneides flavipunctatus). Syst Biol 56:924–942

    Article  PubMed  Google Scholar 

  • Rivas F, Mujica GE, Brassiolo M (2018) Corredores biológicos y la conservación de la biodiversidad: El caso del corredor norte en Santiago del Estero. In: Giménez AM, Bolzón de Muñiz GI (eds) Los bosques y el futuro. Consolidando un vínculo permanente en la educación forestal. Universidad Nacional de Santiago del Estero, Santiago del Estero, pp 151–177

    Google Scholar 

  • Robert A (2009) Captive breeding genetics and reintroduction success. Biol Conserv 142:2915–2922

    Article  Google Scholar 

  • Roelke ME, Martenson J, O’Brien SJ (1993) The consequences of demographic reduction and genetic depletion in the endangered Florida panther. Curr Biol 3:340–350

    Article  CAS  PubMed  Google Scholar 

  • Ruiz-García M, Castillo MI, Álvarez D et al (2007) Estudio de 14 especies de primates platirrinos (Cebus, Saimiri, Aotus, Saguinus, Lagothrix, Alouatta y Ateles), utilizando 10 loci microsatélites: análisis de la diversidad génica y de la detección de cuellos de botella con propósitos conservacionistas. Orinoquia 11:19–37

    Google Scholar 

  • Ruiz-García M, Leguizamón N, Vasquez C et al (2010) Genetic methods for the reintroduction of primates Saguinus, Aotus and Cebus (Primates: Cebidae) seized in Bogota, Colombia. Rev Biol Trop 58:1049–1067

    PubMed  Google Scholar 

  • Ruiz-García M, Vásquez C, Camargo E et al (2013) Molecular genetics analysis of mtDNA COII gene sequences shows illegal traffic of night monkeys (Aotus, Platyrrhini, Primates) in Colombia. J Primat 2:1–9

    Google Scholar 

  • Ruiz-García M, Pinedo-Castro M, Shostell JM (2018) Small spotted bodies with multiple specific mitochondrial DNAs: existence of diverse and differentiated tigrina lineages or species (Leopardus spp: Felidae, Mammalia) throughout Latin America. Mitochondrial DNA A 29:993–1014

    Article  CAS  Google Scholar 

  • Ruiz-García M, Leguizamón N, Bello A et al (2020) Determinación de los orígenes geográficos de los mamíferos silvestres decomisados por la Secretaría Distrital del Ambiente (SDA) en Bogotá (Colombia) mediante análisis moleculares durante 2017-2018. Bol R Soc Esp Hist Nat 114:1–26

    Google Scholar 

  • Ryder OA (1986) Species conservation and the dilemma of subspecies. Trends Ecol Evol 1:9–10

    Article  Google Scholar 

  • Ryman N, Utter F (1986) Population genetics and fishery management. The Blackburn Press, New Jersey

    Google Scholar 

  • Sanches A, Tokumoto PM, Peres WA et al (2012) Illegal hunting cases detected with molecular forensics in Brazil. Investig Genet 3:1–5

    Article  Google Scholar 

  • Sauvé L (1999) La educación ambiental entre la modernidad y la posmodernidad: en busca de un marco educativo de referencia integrador. Tópicos 1:7–27

    Google Scholar 

  • Schwartz MK, Luikart G, Waples RS (2007) Genetic monitoring as a promising tool for conservation and management. Trends Ecol Evol 22:25–33

    Article  PubMed  Google Scholar 

  • Secchi ER (2010) Review on the threats and conservation Status of Franciscana Pontoporia blainvillei (Cetacea, Pontoporiidae). In: Ruiz Garcia M, Shostell JM (eds) Biology, evolution and conservation of river dolphins within South America and Asia. Nova Science Publishers Inc, New York, pp 323–339

    Google Scholar 

  • Secchi ER, Danilewicz D, Ott PH (2003) Applying the phylogeographic concept to identify franciscana dolphin stocks: implications to meet management objectives. J Cetacean Res Manage 5:61–68

    Google Scholar 

  • Seddon PJ, Griffiths CJ, Soorae PS et al (2014) Reversing defaunation: restoring species in a changing world. Science 345:406–412

    Article  CAS  PubMed  Google Scholar 

  • Sigg DP, Goldizen AW, Pople AR (2005) The importance of mating system in translocation programs: reproductive success of released male bridled nailtail wallabies. Biol Conserv 123:289–300

    Article  Google Scholar 

  • Silva-Rodríguez EA, Aleuy OA, Fuentes-Hurtado M et al (2011) Priorities for the conservation of the pudu (Pudu puda) in southern South America. Anim Prod Sci 51:375–377

    Article  Google Scholar 

  • Silva-Rodríguez E, Pastore H, Jiménez J (2016) Pudu puda. In: The IUCN red list of threatened species 2016: e.T18848A22164089. https://doi.org/10.2305/IUCN.UK.2016-1.RLTS.T18848A22164089.en. Accessed 19 Aug 2020

  • Soulé M, Noss R (1998) Rewilding and biodiversity: complementary goals for continental conservation. Wild Earth 8:19–28

    Google Scholar 

  • Spielman D, Brook BW, Frankham R (2004) Most species are not driven to extinction before genetic factors impact them. PNAS 101:15261–15264

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Steiner C, Putnam A, Hoeck PEA et al (2012) Conservation genomics of threatened animal species. Annu Rev Anim Biosci 1:261–281

    Article  Google Scholar 

  • Storfer A, Murphy MA, Evans JS et al (2007) Putting the landscape in landscape genetics. Heredity 98:129–142

    Article  Google Scholar 

  • Storfer A, Murphy MA, Spear SF et al (2010) Landscape genetics: where are we now? Mol Ecol 19:3496–3514

    Article  PubMed  Google Scholar 

  • Struck TH, Cerca J (2019) Cryptic species and their evolutionary significance. eLS:1–9. https://doi.org/10.1002/9780470015902.a0028292

  • Struck TH, Feder JL, Bendiksby M et al (2018) Finding evolutionary processes hidden in cryptic species. Trends Ecol Evol 33:153–163

    Article  PubMed  Google Scholar 

  • Swift HF, Daglio LG, Dawson MN (2016) Three routes to crypsis: stasis, convergence, and parallelism in the Mastigias species complex (Scyphozoa, Rhizostomeae). Mol Phylogenet Evol 99:103–115

    Article  CAS  PubMed  Google Scholar 

  • Taberlet P, Bonin A, Zinger L et al (2018) Environmental DNA: for biodiversity research and monitoring. Oxford University Press, Oxford

    Book  Google Scholar 

  • Thomsen PF, Willerslev E (2015) Environmental DNA – an emerging tool in conservation for monitoring past and present biodiversity. Biol Conserv 183:4–18

    Google Scholar 

  • Tobe SS, Linacre A (2010) DNA typing in wildlife crime: recent developments in species identification. Forensic Sci Med Pathol 6:195–206

    Article  CAS  PubMed  Google Scholar 

  • Tracy LN, Wallis GP, Efford MG et al (2011) Preserving genetic diversity in threatened species reintroductions: how many individuals should be released? Anim Conserv 14:439–446

    Article  Google Scholar 

  • Trigila AP, Gómez JJ, Cassini MH et al (2016) Genetic diversity in the Neotropical river otter, Lontra longicaudis (Mammalia, Mustelidae), in the Lower Delta of Parana River, Argentina and its relation with habitat suitability. Hydrobiologia 768:287–298

    Article  Google Scholar 

  • Trigo TC, Freitas TRO, Kunzler G et al (2008) Inter-species hybridization among Neotropical cats of the genus Leopardus, and evidence for an introgressive hybrid zone between L. geoffroyi and L. tigrinus in southern Brazil. Mol Ecol 17:4317–4333

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Trigo TC, Schneider A, Oliveira TG et al (2013) Molecular data reveal complex hybridization and a cryptic species of Neotropical wild cat. Curr Biol 23:2528–2533

    Article  CAS  PubMed  Google Scholar 

  • Trigo TC, Tirelli FP, de Freitas TRO et al (2014) Comparative assessment of genetic and morphological variation at an extensive hybrid zone between two wild cats in Southern Brazil. PLoS One 9:e108469

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Trolle M, Kéry M (2003) Estimation of ocelot density in the Pantanal using capture-recapture analysis of camera-trapping data. J Mammal 84:607–614

    Article  Google Scholar 

  • Túnez JI, Centrón D, Cappozzo HL et al (2007) Geographic distribution and diversity of mitochondrial DNA haplotypes in South American sea lions (Otaria flavescens) and fur seals (Arctocephalus australis). Mammal Biol 72:193–203

    Article  Google Scholar 

  • Túnez JI, Cappozzo HL, Nardelli M et al (2010) Population genetic structure and historical population dynamics of the South American sea lion, Otaria flavescens, in north-central Patagonia. Genetica 138:831–841

    Article  PubMed  Google Scholar 

  • Túnez JI, Cappozzo HL, Pavés H et al (2013) The role of Pleistocene glaciations in shaping the genetic structure of South American fur seals (Arctocephalus australis). N Z J Mar Freshw Res 47:139–152

    Article  Google Scholar 

  • Valencia-Rodriguez LM (2018) Effects of anthropogenic habitat fragmentation on silvery brown tamarin (Saguinus leucopus) dispersal and movement patterns: landscape genetics, habitat connectivity and conservation implications. PhD Thesis, University of Texas, Austin

    Google Scholar 

  • Valsecchi E, Zanelatto RC (2003) Molecular analysis of the social and population structure of the franciscana (Pontoporia blainvillei): conservation implications. J Cetacean Res Manag 5:69–75

    Google Scholar 

  • Vázquez-Domínguez E (2007) Filogeografía y vertebrados. In: Eguiarte LE, Souza V, Aguirre X (eds) Ecología molecular. Instituto Nacional de Ecología, Universidad Nacional Autónoma de México, México DC, Secretaria de Medio Ambiente y Recursos Naturales, pp 441–466

    Google Scholar 

  • Wang JY (2002) Stock identity. In: Perrin WF, Wursig B, Thewissen JGM (eds) Encyclopedia of marine mammals. Academic, San Diego, pp 1189–1192

    Google Scholar 

  • Zamboni T, Di Martino S, Jiménez-Pérez I (2017) A review of a multispecies reintroduction to restore a large ecosystem: the Iberá Rewilding Program (Argentina). Perspec Ecol Conserv 15:248–256

    Google Scholar 

  • Zamboni T, Peña J, Di Martino S et al (2018) Experimental reintroduction of the giant otter (Pteronura brasiliensis) in the Iberá Park (Corrientes, Argentina). In: The conservation land trust technical report. Available at: http://www.proyectoibera.org/en/download/nutria/giant_otter_reintroduction_project.pdf. Accessed 26 Jan 2020

  • Zerbini AN, Secchi E, Crespo E et al (2017) Pontoporia blainvillei (errata version published in 2018). In: The IUCN red list of threatened species 2017: e.T17978A123792204. https://doi.org/10.2305/IUCN.UK.2017-3.RLTS.T17978A50371075.en. Accessed 17 Aug 2020

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Túnez, J.I., Ibañez, E.A., Nardelli, M., Peralta, D.M., Byrne, M.S. (2021). The Use of Molecular Markers in Neotropical Mammal Conservation. In: Nardelli, M., Túnez, J.I. (eds) Molecular Ecology and Conservation Genetics of Neotropical Mammals. Springer, Cham. https://doi.org/10.1007/978-3-030-65606-5_3

Download citation

Publish with us

Policies and ethics