Skip to main content

Liquid Hot Water Pretreatment for Lignocellulosic Biomass Biorefinery

  • Chapter
  • First Online:
Emerging Technologies for Biorefineries, Biofuels, and Value-Added Commodities
  • 345 Accesses

Abstract

Liquid hot water (LHW) technology has been thought as a green process which hardly pollutes the environment due to no addition of chemical reagents. It is usually employed as a pretreatment method for producing ethanol, butanol, lactic acid, biogas, and other biochemicals from lignocellulose. It is also used as a technology to directly obtain products from lignocellulose such as xylooligosaccharide, microcrystalline cellulose, hydrochar, and so on. This chapter describes the technological characteristics and development of LHW process, summarizes the way of LHW treatment to influence the physicochemical features of lignocellulose and the biorefinery efficiency, and depicts the application of LHW technology for bioproduct production. It concludes that LHW treatment is a versatile biorefinery technology and outlooks the promising way for the practical application of LHW technology.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Himmel, M. E., et al. (2007). Biomass recalcitrance: Engineering plants and enzymes for biofuels production. Science, 315(5813), 804–807.

    Article  Google Scholar 

  2. Liu, C. G., et al. (2019). Cellulosic ethanol production: Progress, challenges and strategies for solutions. Biotechnology Advances, 37(3), 491–504.

    Article  Google Scholar 

  3. Kumari, D., & Singh, R. (2018). Pretreatment of lignocellulosic wastes for biofuel production: A critical review. Renewable & Sustainable Energy Reviews, 90, 877–891.

    Article  Google Scholar 

  4. Zhuang, X. S., et al. (2016). Liquid hot water pretreatment of lignocellulosic biomass for bioethanol production accompanying with high valuable products. Bioresource Technology, 199, 68–75.

    Article  Google Scholar 

  5. Li, M., et al. (2017). The effect of liquid hot water pretreatment on the chemical-structural alteration and the reduced recalcitrance in poplar. Biotechnology for Biofuels, 10, 237.

    Article  Google Scholar 

  6. Akhtar, N., et al. (2016). Recent advances in pretreatment technologies for efficient hydrolysis of lignocellulosic biomass. Environmental Progress & Sustainable Energy, 35(2), 489–511.

    Article  Google Scholar 

  7. Garrote, G., Domínguez, H., & Parajó, J. C. (1999). Hydrothermal processing of lignocellulosic materials. Holz als Roh- und Werkstoff, 57, 191–202.

    Article  Google Scholar 

  8. Alvira, P., et al. (2010). Pretreatment technologies for an efficient bioethanol production process based on enzymatic hydrolysis: A review. Bioresource Technology, 101(13), 4851–4861.

    Article  Google Scholar 

  9. Silveira, M. H. L., et al. (2015). Current pretreatment technologies for the development of cellulosic ethanol and biorefineries. ChemSusChem, 8(20), 3366–3390.

    Article  Google Scholar 

  10. Yu, Q., et al. (2013). Liquid hot water pretreatment of sugarcane bagasse and its comparison with chemical pretreatment methods for the sugar recovery and structural changes. Bioresource Technology, 129, 592–598.

    Article  Google Scholar 

  11. Yu, Q., et al. (2015). Xylo-oligosaccharides and ethanol production from liquid hot water hydrolysate of sugarcane bagasse. Bioresources, 10(1), 30–40.

    Google Scholar 

  12. Ko, J. K., et al. (2015). Effect of liquid hot water pretreatment severity on properties of hardwood lignin and enzymatic hydrolysis of cellulose. Biotechnology and Bioengineering, 112(2), 252–262.

    Article  Google Scholar 

  13. Li, X., & Zheng, Y. (2017). Lignin-enzyme interaction: Mechanism, mitigation approach, modeling, and research prospects. Biotechnology Advances, 35(4), 466–489.

    Article  Google Scholar 

  14. Overend, R. P., & Chornet, E. (1987). Fractionation of lignocellulosics by steam-aqueous pretreatments. Philosophical Transactions of the Royal Society London A, 321, 523–536.

    Article  Google Scholar 

  15. Toscan, A., et al. (2019). New two-stage pretreatment for the fractionation of lignocellulosic components using hydrothermal pretreatment followed by imidazole delignification: Focus on the polysaccharide valorization. Bioresource Technology, 285, 121346.

    Article  Google Scholar 

  16. Hashemi, S. S., Karimi, K., & Mirmohamadsadeghi, S. (2019). Hydrothermal pretreatment of safflower straw to enhance biogas production. Energy, 172, 545–554.

    Article  Google Scholar 

  17. Reddy, P., et al. (2015). Structural characterisation of pretreated solids from flow-through liquid hot water treatment of sugarcane bagasse in a fixed-bed reactor. Bioresource Technology, 183, 259–261.

    Article  Google Scholar 

  18. Archambault-Léger, V., Losordo, Z., & Lynd, L. R. (2015). Energy, sugar dilution, and economic analysis of hot water flow-through pre-treatment for producing biofuel from sugarcane residues. Biofuels, Bioproducts and Biorefining, 9(1), 95–108.

    Article  Google Scholar 

  19. Yu, Q., et al. (2011). The effect of metal salts on the decomposition of sweet sorghum bagasse in flow-through liquid hot water. Bioresource Technology, 102(3), 3445–3450.

    Article  Google Scholar 

  20. Batista, G., et al. (2019). Effect of severity factor on the hydrothermal pretreatment of sugarcane straw. Bioresource Technology, 275, 321–327.

    Article  Google Scholar 

  21. Zhou, W., et al. (2014). Changes in plant cell-wall structure of corn stover due to hot compressed water pretreatment and enhanced enzymatic hydrolysis. World Journal of Microbiology and Biotechnology, 30(8), 2325–2333.

    Article  Google Scholar 

  22. Han, Q., et al. (2015). Autohydrolysis pretreatment of waste wheat straw for cellulosic ethanol production in a co-located straw pulp mill. Applied Biochemistry and Biotechnology, 175(2), 1193–1210.

    Article  Google Scholar 

  23. Nitsos, C. K., et al. (2019). Enhancing lignocellulosic biomass hydrolysis by hydrothermal pretreatment, extraction of surface lignin, wet milling and production of cellulolytic enzymes. ChemSusChem, 12(6), 1179–1195.

    Article  Google Scholar 

  24. Romaní, A., et al. (2010). Experimental assessment on the enzymatic hydrolysis of hydrothermally pretreated eucalyptus globulus wood. Industrial and Engineering Chemistry Research, 49, 4653–4663.

    Article  Google Scholar 

  25. Girio, F. M., et al. (2010). Hemicelluloses for fuel ethanol: A review. Bioresource Technology, 101(13), 4775–4800.

    Article  Google Scholar 

  26. Shi, S., et al. (2017). Reaction kinetic model of dilute acid-catalyzed hemicellulose hydrolysis of corn stover under high-solid conditions. Industrial & Engineering Chemistry Research, 56(39), 10990–10997.

    Article  Google Scholar 

  27. Conner, A. H. (1984). Kinetic modeling of hardwood prehydrolysis. Part 1. Xylan removal by water prehydrolysis. Wood and Fiber Science, 16(2), 268–277.

    Google Scholar 

  28. Nabarlatz, D., Farriol, X., & Montané, D. (2004). Kinetic modeling of the autohydrolysis of lignocellulosic biomass for the production of hemicellulose-derived oligosaccharides. Industrial and Engineering Chemistry Research, 43, 4124–4131.

    Article  Google Scholar 

  29. Yu, Q., et al. (2012). Hydrolysis of sweet sorghum bagasse and eucalyptus wood chips with liquid hot water. Bioresource Technology, 116, 220–225.

    Article  Google Scholar 

  30. Pronyk, C., & Mazza, G. (2010). Kinetic modeling of hemicellulose hydrolysis from triticale straw in a pressurized low polarity water flow-through reactor. Industrial and Engineering Chemistry Research, 49, 6367–6375.

    Article  Google Scholar 

  31. Zhuang, X., et al. (2009). Kinetic study of hydrolysis of xylan and agricultural wastes with hot liquid water. Biotechnology Advances, 27(5), 578–582.

    Article  Google Scholar 

  32. Ralph, J., Lapierre, C., & Boerjan, W. (2019). Lignin structure and its engineering. Current Opinion in Biotechnology, 56, 240–249.

    Google Scholar 

  33. Nitsos, C. K., Matis, K. A., & Triantafyllidis, K. S. (2013). Optimization of hydrothermal pretreatment of lignocellulosic biomass in the bioethanol production process. ChemSusChem, 6(1), 110–122.

    Article  Google Scholar 

  34. Meng, X., & Ragauskas, A. J. (2017). Pseudo-lignin formation during dilute acid pretreatment for cellulosic ethanol. Recent Advance in Petrochem Science, 1(1), 555551.

    Google Scholar 

  35. Hatakeyama, H., et al. (2010). Thermal decomposition and glass transition of industrial hydrolysis lignin. Journal of Thermal Analysis and Calorimetry, 101(1), 289–295.

    Article  Google Scholar 

  36. Ma, J., et al. (2014). Revealing the changes in topochemical characteristics of poplar cell wall during hydrothermal pretreatment. Bioenergy Research, 7(4), 1358–1368.

    Article  Google Scholar 

  37. Zhang, H. D., & Wu, S. B. (2014). Impact of liquid hot water pretreatment on the structural changes of sugarcane bagasse biomass for sugar production. Mechanical Science and Engineering Iv, 472, 774–779.

    Google Scholar 

  38. Xiao, L. P., et al. (2011). Impact of hot compressed water pretreatment on the structural changes of woody biomass for bioethanol production. Bioresources, 6(2), 1576–1598.

    Google Scholar 

  39. Wang, W., et al. (2012). Effect of structural changes on enzymatic hydrolysis of eucalyptus, sweet sorghum bagasse, and sugarcane bagasse after liquid hot water pretreatment. Bioresources, 7(2), 2469–2482.

    Google Scholar 

  40. Zhang, L., et al. (2015). Characterization of lignin derived from water-only and dilute acid flowthrough pretreatment of poplar wood at elevated temperatures. Biotechnology for Biofuels, 8, 203.

    Article  Google Scholar 

  41. Moghaddam, L., et al. (2017). Structural characteristics of bagasse furfural residue and its lignin component. An NMR, Py-GC/MS, and FTIR study. ACS Sustainable Chemistry & Engineering, 5(6), 4846–4855.

    Article  Google Scholar 

  42. Qin, Z., et al. (2018). Structural elucidation of lignin-carbohydrate complexes (LCCs) from Chinese quince (Chaenomeles sinensis) fruit. International Journal of Biological Macromolecules, 116, 1240–1249.

    Article  Google Scholar 

  43. Zeng, M. J., et al. (2012). Tissue-specific biomass recalcitrance in corn stover pretreated with liquid hot-water: SEM imaging (part 2). Biotechnology and Bioengineering, 109(2), 398–404.

    Article  Google Scholar 

  44. Wang, W., et al. (2015). Investigation of the pellets produced from sugarcane bagasse during liquid hot water pretreatment and their impact on the enzymatic hydrolysis. Bioresource Technology, 190, 7–12.

    Article  Google Scholar 

  45. Li, X. Z., et al. (2014). Characteristics of corn stover pretreated with liquid hot water and fed-batch semi-simultaneous saccharification and fermentation for bioethanol production. PLoS One, 9(4).

    Google Scholar 

  46. Shi, J., et al. (2018). Effect of thermal treatment with water, H2SO4 and NaOH aqueous solution on color, cell wall and chemical structure of poplar wood. Scientific Reports, 8(1), 17735.

    Article  Google Scholar 

  47. Qiang, Y., et al. (2014). Change of ultrastructure and composition of sugarcane bagasse in liquid hot water. CIESC Journal, 65(12), 5010–5016.

    Google Scholar 

  48. L, S., et al. (1959). An empirical method for estimating the degree of crystallinity of native cellulose using the X-ray diffractometer. Textile Research Journal, 29, 786–794.

    Article  Google Scholar 

  49. He, J., Cui, S., & Wang, S.-y. (2008). Preparation and crystalline analysis of high-grade bamboo dissolving pulp for cellulose acetate. Journal of Applied Polymer Science, 107, 1029–1038.

    Article  Google Scholar 

  50. Ali, M., et al. (1996). A solid - state NMR study of cellulose degradation. Cellulose, 3, 77–90.

    Article  Google Scholar 

  51. Yu, Y., & Wu, H. (2010). Understanding the primary liquid products of cellulose hydrolysis in hot-compressed water at various reaction temperatures. Energy & Fuels, 24(3), 1963–1971.

    Article  Google Scholar 

  52. Dogaris, I., et al. (2009). Hydrothermal processing and enzymatic hydrolysis of sorghum bagasse for fermentable carbohydrates production. Bioresource Technology, 100(24), 6543–6549.

    Article  Google Scholar 

  53. Gallina, G., et al. (2016). Optimal conditions for hemicelluloses extraction from Eucalyptus globulus wood: Hydrothermal treatment in a semi-continuous reactor. Fuel Processing Technology, 148, 350–360.

    Article  Google Scholar 

  54. Cocero, M. J., et al. (2018). Understanding biomass fractionation in subcritical & supercritical water. The Journal of Supercritical Fluids, 133, 550–565.

    Article  Google Scholar 

  55. Liaw, S. B., Yu, Y., & Wu, H. (2016). Association of inorganic species release with sugar recovery during wood hydrothermal processing. Fuel, 166, 581–584.

    Article  Google Scholar 

  56. Makishima, S., et al. (2009). Development of continuous flow type hydrothermal reactor for hemicellulose fraction recovery from corncob. Bioresource Technology, 100(11), 2842–2848.

    Article  Google Scholar 

  57. Yu, Y. (2009). Formation and characteristics of glucose oligomers during the hydrolysis of cellulose in hot-compressed water. Curtin University.

    Google Scholar 

  58. Duan, P., & Savage, P. E. (2011). Hydrothermal liquefaction of a microalga with heterogeneous catalysts. Industrial & Engineering Chemistry Research, 50(1), 52–61.

    Article  Google Scholar 

  59. Gallina, G., et al. (2018). Hydrothermal extraction of hemicellulose: From lab to pilot scale. Bioresource Technology, 247, 980–991.

    Article  Google Scholar 

  60. Tolonen, L. K., et al. (2011). Structural changes in microcrystalline cellulose in subcritical water treatment. Biomacromolecules, 12(7), 2544–2551.

    Article  Google Scholar 

  61. Luterbacher, J. S., et al. (2014). Nonenzymatic sugar production from biomass using biomass-derived gamma-valerolactone. Science, 343(6168), 277–280.

    Article  Google Scholar 

  62. Chen, W.-H., Tu, Y.-J., & Sheen, H.-K. (2011). Disruption of sugarcane bagasse lignocellulosic structure by means of dilute sulfuric acid pretreatment with microwave-assisted heating. Applied Energy, 88(8), 2726–2734.

    Article  Google Scholar 

  63. Hu, Z., & Wen, Z. (2008). Enhancing enzymatic digestibility of switchgrass by microwave-assisted alkali pretreatment. Biochemical Engineering Journal, 38(3), 369–378.

    Article  Google Scholar 

  64. Ooshima, H., et al. (1984). Microwave treatment of cellulosic materials for their enzymatic hydrolysis. Biotechnology Letters, 6(5), 289–294.

    Article  Google Scholar 

  65. Gabhane, J., et al. (2015). Solar assisted alkali pretreatment of garden biomass: Effects on lignocellulose degradation, enzymatic hydrolysis, crystallinity and ultra-structural changes in lignocellulose. Waste Management, 40, 92–99.

    Article  Google Scholar 

  66. Xiao, C., et al. (2019). A solar-driven continuous hydrothermal pretreatment system for biomethane production from microalgae biomass. Applied Energy, 236, 1011–1018.

    Article  Google Scholar 

  67. Lloyd, T. A., & Wyman, C. E. (2005). Combined sugar yields for dilute sulfuric acid pretreatment of corn stover followed by enzymatic hydrolysis of the remaining solids. Bioresource Technology, 96(18), 1967–1977.

    Article  Google Scholar 

  68. Wyman, C. E., et al. (2009). Comparative sugar recovery and fermentation data following pretreatment of poplar wood by leading technologies. Biotechnology Progress, 25(2), 333–339.

    Article  Google Scholar 

  69. Djioleu, A., & Carrier, D. J. (2016). Effects of dilute acid pretreatment parameters on sugar production during biochemical conversion of switchgrass using a full factorial design. ACS Sustainable Chemistry & Engineering, 4(8), 4124–4130.

    Article  Google Scholar 

  70. Matsushita, Y., et al. (2010). Enzymatic saccharification of Eucalyptus bark using hydrothermal pre-treatment with carbon dioxide. Bioresource Technology, 101(13), 4936–4939.

    Article  Google Scholar 

  71. Petrik, S., Kádár, Z., & Márová, I. (2013). Utilization of hydrothermally pretreated wheat straw for production of bioethanol and carotene-enriched biomass. Bioresource Technology, 133, 370–377.

    Article  Google Scholar 

  72. Song, B., et al. (2019). Importance of lignin removal in enhancing biomass hydrolysis in hot-compressed water. Bioresource Technology, 288, 121522.

    Article  Google Scholar 

  73. Hubbell, C. A., & Ragauskas, A. J. (2010). Effect of acid-chlorite delignification on cellulose degree of polymerization. Bioresource Technology, 101(19), 7410–7415.

    Article  Google Scholar 

  74. Siqueira, G., et al. (2013). Enhancement of cellulose hydrolysis in sugarcane bagasse by the selective removal of lignin with sodium chlorite. Applied Energy, 102, 399–402.

    Article  Google Scholar 

  75. Kim, J. S., Lee, Y., & Kim, T. H. (2016). A review on alkaline pretreatment technology for bioconversion of lignocellulosic biomass. Bioresource Technology, 199, 42–48.

    Article  Google Scholar 

  76. Mosier, N., et al. (2005). Features of promising technologies for pretreatment of lignocellulosic biomass. Bioresource Technology, 96(6), 673–686.

    Article  Google Scholar 

  77. Vu, A., Wickramasinghe, S. R., & Qian, X. (2018). Polymeric solid acid catalysts for lignocellulosic biomass fractionation. Industrial & Engineering Chemistry Research, 57(13), 4514–4525.

    Article  Google Scholar 

  78. Qi, W., et al. (2018). Carbon-based solid acid pretreatment in corncob saccharification: Specific xylose production and efficient enzymatic hydrolysis. ACS Sustainable Chemistry & Engineering, 6(3), 3640–3648.

    Article  Google Scholar 

  79. Pan, X., et al. (2007). Pretreatment of lodgepole pine killed by mountain pine beetle using the ethanol organosolv process: Fractionation and process optimization. Industrial & Engineering Chemistry Research, 46(8), 2609–2617.

    Article  Google Scholar 

  80. Pan, X., et al. (2008). The bioconversion of mountain pine beetle-killed lodgepole pine to fuel ethanol using the organosolv process. Biotechnology and Bioengineering, 101(1), 39–48.

    Article  Google Scholar 

  81. Brosse, N., Sannigrahi, P., & Ragauskas, A. (2009). Pretreatment of Miscanthus x giganteus using the ethanol organosolv process for ethanol production. Industrial & Engineering Chemistry Research, 48(18), 8328–8334.

    Article  Google Scholar 

  82. Huijgen, W. J., et al. (2011). Catalytic organosolv fractionation of willow wood and wheat straw as pretreatment for enzymatic cellulose hydrolysis. Journal of Chemical Technology & Biotechnology, 86(11), 1428–1438.

    Article  Google Scholar 

  83. Mesa, L., et al. (2011). The effect of organosolv pretreatment variables on enzymatic hydrolysis of sugarcane bagasse. Chemical Engineering Journal, 168(3), 1157–1162.

    Article  Google Scholar 

  84. Wildschut, J., et al. (2013). Ethanol-based organosolv fractionation of wheat straw for the production of lignin and enzymatically digestible cellulose. Bioresource Technology, 135, 58–66.

    Article  Google Scholar 

  85. Zhang, H., & Wu, S. (2014). Efficient sugar release by acetic acid ethanol-based organosolv pretreatment and enzymatic saccharification. Journal of Agricultural and Food Chemistry, 62(48), 11681–11687.

    Article  Google Scholar 

  86. Tang, C., et al. (2017). Organic amine catalytic organosolv pretreatment of corn stover for enzymatic saccharification and high-quality lignin. Bioresource Technology, 232, 222–228.

    Article  Google Scholar 

  87. Lai, C., et al. (2017). Lignin alkylation enhances enzymatic hydrolysis of lignocellulosic biomass. Energy & Fuels, 31(11), 12317–12326.

    Article  Google Scholar 

  88. Lynd, L. R., et al. (1991). Fuel ethanol from cellulosic biomass. Science, 251(4999), 1318–1323.

    Article  Google Scholar 

  89. Huijgen, W. J., Reith, J. H., & den Uil, H. (2010). Pretreatment and fractionation of wheat straw by an acetone-based organosolv process. Industrial & Engineering Chemistry Research, 49(20), 10132–10140.

    Article  Google Scholar 

  90. Mostofian, B., et al. (2016). Local phase separation of co-solvents enhances pretreatment of biomass for bioenergy applications. Journal of the American Chemical Society, 138(34), 10869–10878.

    Article  Google Scholar 

  91. Teng, J., et al. (2016). Catalytic fractionation of raw biomass to biochemicals and organosolv lignin in a methyl isobutyl ketone/H2O biphasic system. ACS Sustainable Chemistry & Engineering, 4(4), 2020–2026.

    Article  Google Scholar 

  92. Wettstein, S. G., et al. (2012). Production of levulinic acid and gamma-valerolactone (GVL) from cellulose using GVL as a solvent in biphasic systems. Energy & Environmental Science, 5(8), 8199–8203.

    Article  Google Scholar 

  93. Shuai, L., Questell-Santiago, Y. M., & Luterbacher, J. S. (2016). A mild biomass pretreatment using γ-valerolactone for concentrated sugar production. Green Chemistry, 18(4), 937–943.

    Article  Google Scholar 

  94. Mellmer, M. A., et al. (2014). Solvent effects in acid-catalyzed biomass conversion reactions. Angewandte Chemie International Edition, 53(44), 11872–11875.

    Article  Google Scholar 

  95. Song, B., Yu, Y., & Wu, H. (2018). Solvent effect of gamma-valerolactone (GVL) on cellulose and biomass hydrolysis in hot-compressed GVL/water mixtures. Fuel, 232, 317–322.

    Article  Google Scholar 

  96. Song, B., Yu, Y., & Wu, H. (2017). Insights into hydrothermal decomposition of cellobiose in gamma-valerolactone/water mixtures. Industrial & Engineering Chemistry Research, 56(28), 7957–7963.

    Article  Google Scholar 

  97. Lê, H. Q., et al. (2018). Chemical recovery of γ-valerolactone/water biorefinery. Industrial & Engineering Chemistry Research, 57(44), 15147–15158.

    Article  Google Scholar 

  98. Fort, D. A., et al. (2007). Can ionic liquids dissolve wood? Processing and analysis of lignocellulosic materials with 1-n-butyl-3-methylimidazolium chloride. Green Chemistry, 9(1), 63–69.

    Article  Google Scholar 

  99. Kilpeläinen, I., et al. (2007). Dissolution of wood in ionic liquids. Journal of Agricultural and Food Chemistry, 55(22), 9142–9148.

    Article  Google Scholar 

  100. Brandt, A., et al. (2010). The effect of the ionic liquid anion in the pretreatment of pine wood chips. Green Chemistry, 12(4), 672–679.

    Article  Google Scholar 

  101. Brandt, A., et al. (2013). Deconstruction of lignocellulosic biomass with ionic liquids. Green Chemistry, 15(3), 550–583.

    Article  Google Scholar 

  102. Brandt, A., et al. (2011). Ionic liquid pretreatment of lignocellulosic biomass with ionic liquid–water mixtures. Green Chemistry, 13(9), 2489–2499.

    Article  Google Scholar 

  103. Zhang, Y., et al. (2010). Ionic liquid− water mixtures: Enhanced K w for efficient cellulosic biomass conversion. Energy & Fuels, 24(4), 2410–2417.

    Article  Google Scholar 

  104. Dibble, D. C., et al. (2011). A facile method for the recovery of ionic liquid and lignin from biomass pretreatment. Green Chemistry, 13(11), 3255–3264.

    Article  Google Scholar 

  105. Brandt-Talbot, A., et al. (2017). An economically viable ionic liquid for the fractionation of lignocellulosic biomass. Green Chemistry, 19(13), 3078–3102.

    Article  Google Scholar 

  106. Lê, H. Q., Sixta, H., & Hummel, M. (2018). Ionic liquids and gamma-valerolactone as case studies for green solvents in the deconstruction and refining of biomass. Current Opinion in Green and Sustainable Chemistry, 18, 20–24.

    Google Scholar 

  107. Wahlström, R., & Suurnäkki, A. (2015). Enzymatic hydrolysis of lignocellulosic polysaccharides in the presence of ionic liquids. Green Chemistry, 17(2), 694–714.

    Article  Google Scholar 

  108. Francisco, M., van den Bruinhorst, A., & Kroon, M. C. (2012). New natural and renewable low transition temperature mixtures (LTTMs): Screening as solvents for lignocellulosic biomass processing. Green Chemistry, 14(8), 2153–2157.

    Article  Google Scholar 

  109. Kumar, A. K., Parikh, B. S., & Pravakar, M. (2016). Natural deep eutectic solvent mediated pretreatment of rice straw: Bioanalytical characterization of lignin extract and enzymatic hydrolysis of pretreated biomass residue. Environmental Science and Pollution Research, 23(10), 9265–9275.

    Article  Google Scholar 

  110. Kim, K. H., et al. (2018). Biomass pretreatment using deep eutectic solvents from lignin derived phenols. Green Chemistry, 20(4), 809–815.

    Article  Google Scholar 

  111. Satlewal, A., et al. (2018). Assessing the facile pretreatments of bagasse for efficient enzymatic conversion and their impacts on structural and chemical properties. ACS Sustainable Chemistry & Engineering, 7(1), 1095–1104.

    Article  Google Scholar 

  112. Chen, L., et al. (2019). A novel deep eutectic solvent from lignin-derived acids for improving the enzymatic digestibility of herbal residues from cellulose. Cellulose, 26(3), 1947–1959.

    Article  Google Scholar 

  113. Yu, Q., et al. (2018). Deep eutectic solvents from hemicellulose-derived acids for the cellulosic ethanol refining of Akebia’herbal residues. Bioresource Technology, 247, 705–710.

    Article  Google Scholar 

  114. Yu, Q., et al. (2019). In situ deep eutectic solvent pretreatment to improve lignin removal from garden wastes and enhance production of bio-methane and microbial lipids. Bioresource Technology, 271, 210–217.

    Article  Google Scholar 

  115. Paiva, A., et al. (2014). Natural deep eutectic solvents–solvents for the 21st century. ACS Sustainable Chemistry & Engineering, 2(5), 1063–1071.

    Article  Google Scholar 

  116. Yuan, Z., et al. (2015). Process intensification effect of ball milling on the hydrothermal pretreatment for corn straw enzymolysis. Energy Conversion and Management, 101, 481–488.

    Article  Google Scholar 

  117. Deng, A., et al. (2016). Production of xylo-sugars from corncob by oxalic acid-assisted ball milling and microwave-induced hydrothermal treatments. Industrial Crops and Products, 79, 137–145.

    Article  Google Scholar 

  118. Yu, Y., & Wu, H. (2011). Effect of ball milling on the hydrolysis of microcrystalline cellulose in hot-compressed water. AIChE Journal, 57(3), 793–800.

    Article  Google Scholar 

  119. Ruiz, H. A., et al. (2011). Evaluation of a hydrothermal process for pretreatment of wheat straw—effect of particle size and process conditions. Journal of Chemical Technology & Biotechnology, 86(1), 88–94.

    Article  Google Scholar 

  120. Kim, S. M., Dien, B. S., & Singh, V. (2016). Promise of combined hydrothermal/chemical and mechanical refining for pretreatment of woody and herbaceous biomass. Biotechnology for Biofuels, 9(1), 97.

    Article  Google Scholar 

  121. Liu, C.-G., et al. (2015). Combination of ionic liquid and instant catapult steam explosion pretreatments for enhanced enzymatic digestibility of rice straw. ACS Sustainable Chemistry & Engineering, 4(2), 577–582.

    Article  Google Scholar 

  122. Wojtasz-Mucha, J., Hasani, M., & Theliander, H. (2017). Hydrothermal pretreatment of wood by mild steam explosion and hot water extraction. Bioresource Technology, 241, 120–126.

    Article  Google Scholar 

  123. Qing, Q., Yang, B., & Wyman, C. E. (2010). Xylooligomers are strong inhibitors of cellulose hydrolysis by enzymes. Bioresource Technology, 101(24), 9624–9630.

    Article  Google Scholar 

  124. Rajan, K., & Carrier, D. J. (2016). Insights into exo-cellulase inhibition by the hot water hydrolyzates of rice straw. ACS Sustainable Chemistry & Engineering, 4(7), 3627–3633.

    Article  Google Scholar 

  125. Yu, Q., et al. (2010). Two-step liquid hot water pretreatment of Eucalyptus grandis to enhance sugar recovery and enzymatic digestibility of cellulose. Bioresource Technology, 101(13), 4895–4899.

    Article  Google Scholar 

  126. Lin, R., et al. (2015). Inhibitory effects of furan derivatives and phenolic compounds on dark hydrogen fermentation. Bioresource Technology, 196, 250–255.

    Article  Google Scholar 

  127. Wang, D., et al. (2018). Can hydrothermal pretreatment improve anaerobic digestion for biogas from lignocellulosic biomass? Bioresource Technology, 249, 117–124.

    Article  Google Scholar 

  128. Lin, R., et al. (2019). Improving gaseous biofuel production from seaweed Saccharina latissima: The effect of hydrothermal pretreatment on energy efficiency. Energy Conversion and Management, 196, 1385–1394.

    Article  Google Scholar 

  129. Ragauskas, A. J., et al. (2014). Lignin Valorization: Improving Lignin Processing in the Biorefinery. Science, 344, 1246843.

    Google Scholar 

  130. Xu, J., et al. (2016). Correlation between physicochemical properties and enzymatic digestibility of rice straw pretreated with cholinium ionic liquids. ACS Sustainable Chemistry & Engineering, 4(8), 4340–4345.

    Article  Google Scholar 

  131. Mou, H., & Wu, S. (2017). Comparison of hydrothermal, hydrotropic and organosolv pretreatment for improving the enzymatic digestibility of bamboo. Cellulose, 24(1), 85–94.

    Article  Google Scholar 

  132. Kang, X., et al. (2018). Improving methane production from anaerobic digestion of Pennisetum hybrid by alkaline pretreatment. Bioresource Technology, 255, 205–212.

    Article  Google Scholar 

  133. Yang, B., & Wyman, C. E. (2004). Effect of xylan and lignin removal by batch and flowthrough pretreatment on the enzymatic digestibility of corn stover cellulose. Biotechnology and Bioengineering, 86(1), 88–98.

    Article  Google Scholar 

  134. Li, M.-F., Chen, C.-Z., & Sun, R.-C. (2014). Effect of pretreatment severity on the enzymatic hydrolysis of bamboo in hydrothermal deconstruction. Cellulose, 21(6), 4105–4117.

    Article  Google Scholar 

  135. Nitsos, C. K., et al. (2016). Optimization of hydrothermal pretreatment of hardwood and softwood lignocellulosic residues for selective hemicellulose recovery and improved cellulose enzymatic hydrolysis. ACS Sustainable Chemistry & Engineering, 4(9), 4529–4544.

    Article  Google Scholar 

  136. Martínez, J. M., et al. (1997). Hydrolytic pretreatment of softwood and almond shells. Degree of polymerization and enzymatic digestibility of the cellulose fraction. Industrial & Engineering Chemistry Research, 36(3), 688–696.

    Article  Google Scholar 

  137. Xiao, X., et al. (2014). Enhanced enzymatic hydrolysis of bamboo (Dendrocalamus giganteus Munro) culm by hydrothermal pretreatment. Bioresource Technology, 159, 41–47.

    Article  Google Scholar 

  138. Zhang, J., et al. (2014). Understanding changes in cellulose crystalline structure of lignocellulosic biomass during ionic liquid pretreatment by XRD. Bioresource Technology, 151, 402–405.

    Article  Google Scholar 

  139. Fu, D., & Mazza, G. (2011). Aqueous ionic liquid pretreatment of straw. Bioresource Technology, 102(13), 7008–7011.

    Article  Google Scholar 

  140. Li, C., et al. (2010). Comparison of dilute acid and ionic liquid pretreatment of switchgrass: Biomass recalcitrance, delignification and enzymatic saccharification. Bioresource Technology, 101(13), 4900–4906.

    Article  Google Scholar 

  141. Laureano-Perez, L., et al. (2005). Understanding factors that limit enzymatic hydrolysis of biomass. Applied Biochemistry and Biotechnology, 124(1-3), 1081–1099.

    Article  Google Scholar 

  142. Lehtomäki, A., et al. (2008). Anaerobic digestion of grass silage in batch leach bed processes for methane production. Bioresource Technology, 99(8), 3267–3278.

    Article  Google Scholar 

  143. Xu, F., & Li, Y. (2012). Solid-state co-digestion of expired dog food and corn stover for methane production. Bioresource Technology, 118, 219–226.

    Article  Google Scholar 

  144. Li, L., et al. (2010). Effect of temperature and solid concentration on anaerobic digestion of rice straw in South China. International Journal of Hydrogen Energy, 35(13), 7261–7266.

    Google Scholar 

  145. Sawatdeenarunat, C., et al. (2015). Anaerobic digestion of lignocellulosic biomass: Challenges and opportunities. Bioresource Technology, 178, 178–186.

    Article  Google Scholar 

  146. Wang, L., Templer, R., & Murphy, R. J. (2012). High-solids loading enzymatic hydrolysis of waste papers for biofuel production. Applied Energy, 99, 23–31.

    Article  Google Scholar 

  147. Gao, Y., et al. (2014). Optimization of fed-batch enzymatic hydrolysis from alkali-pretreated sugarcane bagasse for high-concentration sugar production. Bioresource Technology, 167, 41–45.

    Article  Google Scholar 

  148. Larnaudie, V., Ferrari, M. D., & Lareo, C. (2019). Enzymatic hydrolysis of liquid hot water-pretreated switchgrass at high solid content. Energy & Fuels, 33(5), 4361–4368.

    Article  Google Scholar 

  149. Xiao, L., Ning, J., & Xu, G. H. (2012). Application of Xylo-oligosaccharide in modifying human intestinal function. African Journal of Microbiology Research, 6(9), 2116–2119.

    Google Scholar 

  150. Carvalho, A. F. A., et al. (2013). Xylo-oligosaccharides from lignocellulosic materials: Chemical structure, health benefits and production by chemical and enzymatic hydrolysis. Food Research International, 51(1), 75–85.

    Article  Google Scholar 

  151. Chung, Y. C., et al. (2007). Dietary intake of xylooligosaccharides improves the intestinal microbiota, fecal moisture, and pH value in the elderly. Nutrition Research, 27(12), 756–761.

    Article  Google Scholar 

  152. Lecerf, J. M., et al. (2012). Xylo-oligosaccharide (XOS) in combination with inulin modulates both the intestinal environment and immune status in healthy subjects, while XOS alone only shows prebiotic properties. British Journal of Nutrition, 108(10), 1847–1858.

    Article  Google Scholar 

  153. Wang, Z. W., et al. (2016). Comprehensive evaluation of the liquid fraction during the hydrothermal treatment of rapeseed straw. Biotechnology for Biofuels, 9, 142.

    Article  Google Scholar 

  154. Griebl, A., et al. (2006). Xylo-oligosaccharide (XOS) formation through hydrothermolysis of xylan derived from viscose process. Macromolecular Symposia, 232, 107–120.

    Article  Google Scholar 

  155. Surek, E., & Buyukkileci, A. O. (2017). Production of xylooligosaccharides by autohydrolysis of hazelnut (Corylus avellana L.) shell. Carbohydrate Polymers, 174, 565–571.

    Article  Google Scholar 

  156. Chen, M.-H., et al. (2014). Autohydrolysis of Miscanthus x giganteus for the production of xylooligosaccharides (XOS): Kinetics, characterization and recovery. Bioresource Technology, 155, 359–365.

    Article  Google Scholar 

  157. Chen, M. H., et al. (2016). Miscanthus x giganteus xylooligosaccharides: Purification and fermentation. Carbohydrate Polymers, 140, 96–103.

    Article  Google Scholar 

  158. Alam, A., et al. (2019). A finalized determinant for complete lignocellulose enzymatic saccharification potential to maximize bioethanol production in bioenergy Miscanthus. Biotechnology for Biofuels, 12, 99.

    Article  Google Scholar 

  159. Yu, Q., et al. (2016). Hemicellulose and lignin removal to improve the enzymatic digestibility and ethanol production. Biomass & Bioenergy, 94, 105–109.

    Article  Google Scholar 

  160. Qureshi, N., et al. (2018). Butanol production from sweet sorghum bagasse with high solids content: Part I-Comparison of liquid hot water pretreatment with dilute sulfuric acid. Biotechnology Progress, 34(4), 960–966.

    Article  Google Scholar 

  161. Su, H. F., et al. (2015). A biorefining process: Sequential, combinational lignocellulose pretreatment procedure for improving biobutanol production from sugarcane bagasse. Bioresource Technology, 187, 149–160.

    Article  Google Scholar 

  162. Shang, C., et al. (2017). Oil production from enzymatic hydrolysate of sugarcane bagasse by Trichosporon cutaneum. Journal of the Chinese Cereals and Oils Association, 32(7), 74–78.

    Google Scholar 

  163. Wang, W., et al. (2012). High consistency enzymatic saccharification of sweet sorghum bagasse pretreated with liquid hot water. Bioresource Technology, 108, 252–257.

    Article  Google Scholar 

  164. Tian, D., et al. (2019). Liquid hot water extraction followed by mechanical extrusion as a chemical-free pretreatment approach for cellulosic ethanol production from rigid hardwood. Fuel, 252, 589–597.

    Article  Google Scholar 

  165. Yang, H., et al. (2019). Bioethanol production from bamboo with alkali-catalyzed liquid hot water pretreatment. Bioresource Technology, 274, 261–266.

    Article  Google Scholar 

  166. Cardona, E., et al. (2018). Liquid-hot-water pretreatment of palm-oil residues for ethanol production: An economic approach to the selection of the processing conditions. Energy, 160, 441–451.

    Article  Google Scholar 

  167. Cuevas, M., et al. (2015). Enhanced ethanol production by simultaneous saccharification and fermentation of pretreated olive stones. Renewable Energy, 74, 839–847.

    Article  Google Scholar 

  168. Klinke, H. B., Thomsen, A. B., & Ahring, B. K. (2004). Inhibition of ethanol-producing yeast and bacteria by degradation products produced during pre-treatment of biomass. Applied Microbiology and Biotechnology, 66(1), 10–26.

    Article  Google Scholar 

  169. Brandon, S. K., et al. (2011). Ethanol and co-product generation from pressurized batch hot water pretreated T85 bermudagrass and Merkeron napiergrass using recombinant Escherichia coli as biocatalyst. Biomass & Bioenergy, 35(8), 3667–3673.

    Article  Google Scholar 

  170. Wang, W., et al. (2016). Highly efficient conversion of sugarcane bagasse pretreated with liquid hot water into ethanol at high solid loading. International Journal of Green Energy, 13(3), 298–304.

    Article  Google Scholar 

  171. Kádár, Z., Szengyel, Z., & Réczey, K. (2004). Simultaneous saccharification and fermentation (SSF) of industrial wastes for the production of ethanol. Industrial Crops and Products, 20, 103–110.

    Article  Google Scholar 

  172. Wang, W., et al. (2013). Reuse of enzymatic hydrolyzed residues from sugarcane bagasse to cultivate lentinula edodes. Bioresources, 8(2), 3017–3026.

    Google Scholar 

  173. X, W. H., & Fungi, E. (2004). China Agricultural. Beijing: University Press.

    Google Scholar 

  174. Molino, A., et al. (2013). Biomethane production by anaerobic digestion of organic waste. Fuel, 103, 1003–1009.

    Article  Google Scholar 

  175. Mao, C., et al. (2015). Review on research achievements of biogas from anaerobic digestion. Renewable and Sustainable Energy Reviews, 45, 540–555.

    Article  Google Scholar 

  176. Yu, Q., et al. (2019). A review of crop straw pretreatment methods for biogas production by anaerobic digestion in China. Renewable and Sustainable Energy Reviews, 107, 51–58.

    Article  Google Scholar 

  177. Taherzadeh, M. J., & Karimi, K. (2008). Pretreatment of lignocellulosic wastes to improve ethanol and biogas production: A review. International Journal of Molecular Sciences, 9(9), 1621–1651.

    Article  Google Scholar 

  178. Gaworski, M., et al. (2017). Enhancing biogas plant production using pig manure and corn silage by adding wheat straw processed with liquid hot water and steam explosion. Biotechnology for Biofuels, 10, 259.

    Article  Google Scholar 

  179. Calicioglu, O., Richard, T. L., & Brennan, R. A. (2019). Anaerobic bioprocessing of wastewater-derived duckweed: Maximizing product yields in a biorefinery value cascade. Bioresource Technology, 289, 121716.

    Article  Google Scholar 

  180. Ahmad, F., Silva, E. L., & Varesche, M. B. A. (2018). Hydrothermal processing of biomass for anaerobic digestion – A review. Renewable and Sustainable Energy Reviews, 98, 108–124.

    Google Scholar 

  181. Jiang, D., et al. (2016). Comparison of liquid hot water and alkaline pretreatments of giant reed for improved enzymatic digestibility and biogas energy production. Bioresource Technology, 216, 60–68.

    Article  Google Scholar 

  182. Yue, X., et al. (2019). A novel method for preparing microcrystalline cellulose from bleached chemical pulp using transition metal ions enhanced high temperature liquid water process. Carbohydrate Polymers, 208, 115–123.

    Article  Google Scholar 

  183. Zhao, P., et al. (2014). Clean solid biofuel production from high moisture content waste biomass employing hydrothermal treatment. Applied Energy, 131, 345–367.

    Article  Google Scholar 

  184. Gupta, D., Mahajani, S. M., & Garg, A. (2019). Effect of hydrothermal carbonization as pretreatment on energy recovery from food and paper wastes. Bioresource Technology, 285, 121329.

    Article  Google Scholar 

  185. Fang, J., et al. (2015). Hydrochars derived from plant biomass under various conditions: Characterization and potential applications and impacts. Chemical Engineering Journal, 267, 253–259.

    Article  Google Scholar 

  186. Volpe, M., Goldfarb, J. L., & Fiori, L. (2018). Hydrothermal carbonization of Opuntia ficus-indica cladodes: Role of process parameters on hydrochar properties. Bioresource Technology, 247, 310–318.

    Article  Google Scholar 

  187. Gao, P., et al. (2016). Preparation and characterization of hydrochar from waste eucalyptus bark by hydrothermal carbonization. Energy, 97, 238–245.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xinshu Zhuang .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Zhuang, X., Wang, W., Song, B., Yu, Q. (2021). Liquid Hot Water Pretreatment for Lignocellulosic Biomass Biorefinery. In: Liu, ZH., Ragauskas, A. (eds) Emerging Technologies for Biorefineries, Biofuels, and Value-Added Commodities. Springer, Cham. https://doi.org/10.1007/978-3-030-65584-6_4

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-65584-6_4

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-65583-9

  • Online ISBN: 978-3-030-65584-6

  • eBook Packages: EnergyEnergy (R0)

Publish with us

Policies and ethics