Skip to main content

Towards the “Shape” of Cosmological Observables and the String Theory Landscape with Topological Data Analysis

  • 667 Accesses

Part of the Signals and Communication Technology book series (SCT)

Abstract

Persistent homology is a technique from Topological Data Analysis that computes the multiscale “shape” of a data set. We review the basic formalism of persistent homology as well as several applications to cosmology and string theory. We describe how persistent homology provides efficient and robust morphological summaries of cosmological observables including the Cosmic Microwave Background and Large-Scale Structure, and how statistical pipelines involving persistent homology can potentially constrain cosmological parameters. We also review the string theory landscape as an interesting data set displaying complex features in high-dimensional spaces, and thus an ideal setting for persistent homology. We describe the characterization of distributions of flux vacua using persistent homology.

Keywords

  • Topological Data Analysis
  • Persistent homology
  • Inflationary cosmology
  • Cosmic microwave background
  • Large scale structure
  • Non-gaussianity
  • String landscape

This research was supported in part by the DOE grant DE-SC0017647, the Heising-Simons Foundation, the Simons Foundation, National Science Foundation Grant No. NSF PHY-1748958, and the Kellett Award of the University of Wisconsin. GS gratefully acknowledges the hospitality of the Kavli Institute for Theoretical Physics during the final stage of this work. AC is grateful to have been supported by a Straka Fellowship at UW-Madison.

This is a preview of subscription content, access via your institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   119.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   159.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   159.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Notes

  1. 1.

    One may also consider (persistent) homology defined over other coefficient fields. For simplicity, we restrict to \(\mathbb {Z}_2\). In fact, this is the most efficient choice if the underlying space does not have torsion, and the results computed for \(\mathbb {Z}_2\) can be translated to homology over other coefficient fields. See Sect. 4.3 of [103] for a discussion.

  2. 2.

    Strictly speaking, the 0-th homology group counts the independent components of the simplicial complex, i.e. disconnected clusters.

  3. 3.

    Strictly speaking, to use the simplcial machinery we have considered so far, M and f are suitably discretized.

  4. 4.

    As was also described in Sect. 9.2, the distinction between “point-like” and “field-like” observables is somewhat artificial, since collections of points can be used to define “field-like” observables and vice versa. In practice, however, transforming between these viewpoints may require nontrivial assumptions about the underlying physics, for examples regarding the bias of various tracers.

  5. 5.

    For a sense of scale, it is estimated that the number of flux vacua for a typical geometry is around \(10^{500}\) [8, 34] and can be as large as \(10^{272,000}\) [98]. The number of geometries in a particular of F-theory ensemble is bounded below by \(\frac{4}{3}\times 2.96\times 10^{755}\) [55].

References

  1. Abel, S., Rizos, J.: Genetic algorithms and the search for viable string vacua. JHEP 08, 010 (2014). https://doi.org/10.1007/JHEP08(2014)010

    CrossRef  ADS  Google Scholar 

  2. Acharya, B.S., Denef, F., Valandro, R.: Statistics of M theory vacua. JHEP 06, 056 (2005). https://doi.org/10.1088/1126-6708/2005/06/056

    CrossRef  Google Scholar 

  3. Ackley, D.H., Hinton, G.E., Sejnowski, T.J.: A learning algorithm for boltzmann machines. Cogn. Sci. 9(1), 147–169 (1985)

    CrossRef  Google Scholar 

  4. Adams, H., Emerson, T., Kirby, M., Neville, R., Peterson, C., Shipman, P., Chepushtanova, S., Hanson, E., Motta, F., Ziegelmeier, L.: Persistence images: a stable vector representation of persistent homology. J. Mach. Learn. Res. 18(1), 218–252 (2017)

    MathSciNet  MATH  Google Scholar 

  5. Ade, P.A.R., et al.: Planck 2015 results XVII constraints on primordial non-gaussianity. Astron. Astrophys. 594, A17 (2016). https://doi.org/10.1051/0004-6361/201525836

    CrossRef  Google Scholar 

  6. Albrecht, A., Steinhardt, P.J.: Cosmology for grand unified theories with radiatively induced symmetry breaking. Phys. Rev. Lett. 48, 1220–1223 (1982). https://doi.org/10.1103/PhysRevLett.48.1220

    CrossRef  ADS  Google Scholar 

  7. Ashmore, A., He, Y.H., Ovrut, B.A.: Machine learning Calabi-Yau metrics (2019)

    Google Scholar 

  8. Ashok, S., Douglas, M.R.: Counting flux vacua. JHEP 01, 060 (2004). https://doi.org/10.1088/1126-6708/2004/01/060

    CrossRef  ADS  MathSciNet  MATH  Google Scholar 

  9. Babich, D., Creminelli, P., Zaldarriaga, M.: The shape of non-gaussianities. JCAP 0408, 009 (2004). https://doi.org/10.1088/1475-7516/2004/08/009

    CrossRef  ADS  Google Scholar 

  10. Banks, T., Dine, M., Gorbatov, E.: Is there a string theory landscape? JHEP 08, 058 (2004). https://doi.org/10.1088/1126-6708/2004/08/058

    CrossRef  ADS  MathSciNet  Google Scholar 

  11. Bardeen, J.M., Steinhardt, P.J., Turner, M.S.: Spontaneous creation of almost scale-free density perturbations in an inflationary universe. Phys. Rev. D 28(4), 679 (1983)

    CrossRef  ADS  Google Scholar 

  12. Biagetti, M., Cole, A., Shiu, G.: The persistence of large scale structures I: primordial non-gaussianity 9, (2020)

    Google Scholar 

  13. Bond, J.R., Kofman, L., Pogosyan, D.: How filaments of galaxies are woven into the cosmic web. Nature 380(6575), 603–606 (1996)

    CrossRef  ADS  Google Scholar 

  14. Bousso, R., Polchinski, J.: Quantization of four form fluxes and dynamical neutralization of the cosmological constant. JHEP 06, 006 (2000). https://doi.org/10.1088/1126-6708/2000/06/006

    CrossRef  ADS  MathSciNet  MATH  Google Scholar 

  15. Brüel-Gabrielsson, R., Nelson, B.J., Dwaraknath, A., Skraba, P., Guibas, L.J., Carlsson, G.: A topology layer for machine learning. arXiv preprint arXiv:1905.12200 (2019)

  16. Bubenik, P.: Statistical topological data analysis using persistence landscapes. J. Mach. Learn. Res. 16(1), 77–102 (2015)

    MathSciNet  MATH  Google Scholar 

  17. Bull, K., He, Y.H., Jejjala, V., Mishra, C.: Machine learning CICY threefolds (2018)

    Google Scholar 

  18. Bull, K., He, Y.H., Jejjala, V., Mishra, C.: Getting CICY high. Phys. Lett. B795, 700–706 (2019). https://doi.org/10.1016/j.physletb.2019.06.067

    CrossRef  ADS  MathSciNet  MATH  Google Scholar 

  19. Carifio, J., Halverson, J., Krioukov, D., Nelson, B.D.: Machine learning in the string landscape. JHEP 09, 157 (2017). https://doi.org/10.1007/JHEP09(2017)157

    CrossRef  ADS  MathSciNet  MATH  Google Scholar 

  20. Carriere, M., Chazal, F., Ike, Y., Lacombe, T., Royer, M., Umeda, Y.: Perslay: a neural network layer for persistence diagrams and new graph topological signatures. Stat 1050, 17 (2019)

    Google Scholar 

  21. Chazal, F., Michel, B.: An introduction to topological data analysis: fundamental and practical aspects for data scientists. arXiv preprint arXiv:1710.04019 (2017)

  22. Chen, X., Huang, M.x., Kachru, S., Shiu, G.: Observational signatures and non-Gaussianities of general single field inflation. JCAP 0701, 002 (2007). https://doi.org/10.1088/1475-7516/2007/01/002

  23. Chingangbam, P., Park, C., Yogendran, K.P., van de Weygaert, R.: Hot and cold spot counts as probes of non-gaussianity in the cosmic microwave background. Astrophys. J. 755, 122 (2012). https://doi.org/10.1088/0004-637X/755/2/122

    CrossRef  ADS  Google Scholar 

  24. Cirafici, M.: Persistent homology and string vacua. JHEP 03, 045 (2016). https://doi.org/10.1007/JHEP03(2016)045

    CrossRef  ADS  MATH  Google Scholar 

  25. Codis, S., Pogosyan, D., Pichon, C.: On the connectivity of the cosmic web: theory and implications for cosmology and galaxy formation. Mon. Not. Roy. Astron. Soc. 479(1), 973–993 (2018). https://doi.org/10.1093/mnras/sty1643, https://doi.org/10.1093/mnras/stz3535, [Erratum: Mon. Not. Roy. Astron. Soc.491, no.4,5794(2020)]

  26. Cohen-Steiner, D., Edelsbrunner, H., Harer, J.: Stability of persistence diagrams. Discrete Comput. Geom. 37(1), 103–120 (2007)

    CrossRef  MathSciNet  Google Scholar 

  27. Cole, A., Loges, G.J., Shiu, G.: Quantitative and interpretable order parameters for phase transitions from persistent homology 9 (2020)

    Google Scholar 

  28. Cole, A., Schachner, A., Shiu, G.: Searching the Landscape of Flux Vacua with Genetic Algorithms. JHEP 11, 045 (2019). https://doi.org/10.1007/JHEP11(2019)045

    CrossRef  ADS  MathSciNet  MATH  Google Scholar 

  29. Cole, A., Shiu, G.: Persistent homology and non-gaussianit. JCAP 1803(03), 025 (2018). https://doi.org/10.1088/1475-7516/2018/03/025

    CrossRef  ADS  Google Scholar 

  30. Cole, A., Shiu, G.: Topological data analysis for the string landscape. JHEP 03, 054 (2019). https://doi.org/10.1007/JHEP03(2019)054

    CrossRef  MathSciNet  MATH  Google Scholar 

  31. Conlon, J.P., Quevedo, F.: On the explicit construction and statistics of Calabi-Yau flux vacua. JHEP 10, 039 (2004). https://doi.org/10.1088/1126-6708/2004/10/039

    CrossRef  ADS  MathSciNet  Google Scholar 

  32. Constantin, A., He, Y.H., Lukas, A.: Counting String Theory Standard Models (2018)

    Google Scholar 

  33. De Silva, V., Carlsson, G.E.: Topological estimation using witness complexes. SPBG 4, 157–166 (2004)

    Google Scholar 

  34. Denef, F., Douglas, M.R.: Distributions of flux vacua. JHEP 05, 072 (2004). https://doi.org/10.1088/1126-6708/2004/05/072

    CrossRef  ADS  MathSciNet  Google Scholar 

  35. Denef, F., Douglas, M.R.: Distributions of nonsupersymmetric flux vacua. JHEP 03, 061 (2005). https://doi.org/10.1088/1126-6708/2005/03/061

    CrossRef  ADS  MathSciNet  Google Scholar 

  36. DeWolfe, O., Giryavets, A., Kachru, S., Taylor, W.: Enumerating flux vacua with enhanced symmetries. JHEP 02, 037 (2005). https://doi.org/10.1088/1126-6708/2005/02/037

    CrossRef  ADS  MathSciNet  Google Scholar 

  37. Dienes, K.R.: Statistics on the heterotic landscape: Gauge groups and cosmological constants of four-dimensional heterotic strings. Phys. Rev. D 73, 106010 (2006). https://doi.org/10.1103/PhysRevD.73.106010

    CrossRef  ADS  MathSciNet  Google Scholar 

  38. Dine, M., O’Neil, D., Sun, Z.: Branches of the landscape. JHEP 07, 014 (2005). https://doi.org/10.1088/1126-6708/2005/07/014

    CrossRef  ADS  MathSciNet  Google Scholar 

  39. Dine, M., Gorbatov, E., Thomas, S.D.: Low energy supersymmetry from the landscape. JHEP 08, 098 (2008). https://doi.org/10.1088/1126-6708/2008/08/098

    CrossRef  ADS  MathSciNet  Google Scholar 

  40. Douglas, M.R.: The Statistics of string / M theory vacua. JHEP 05, 046 (2003). https://doi.org/10.1088/1126-6708/2003/05/046

    CrossRef  ADS  MathSciNet  Google Scholar 

  41. Douglas, M.R.: Statistical analysis of the supersymmetry breaking scale (2004)

    Google Scholar 

  42. Douglas, M.R., Shiffman, B., Zelditch, S.: Critical points and supersymmetric vacua. Commun. Math. Phys. 252, 325–358 (2004). https://doi.org/10.1007/s00220-004-1228-y

    CrossRef  ADS  MathSciNet  MATH  Google Scholar 

  43. Douglas, M.R., Taylor, W.: The Landscape of intersecting brane models. JHEP 01, 031 (2007). https://doi.org/10.1088/1126-6708/2007/01/031

    CrossRef  ADS  MathSciNet  Google Scholar 

  44. Edelsbrunner, H., Harer, J.: Computational topology: an introduction. Am. Math. Soc. (2010)

    Google Scholar 

  45. Elbers, W., van de Weygaert, R.: Persistent topology of the reionization bubble network – i. formalism and phenomenology. Mon. Not. Roy. Astron. Soc. 486(2), 1523–1538 (2019). https://doi.org/10.1093/mnras/stz908

  46. Elsner, F., Wandelt, B.D.: Improved simulation of non-gaussian temperature and polarization cosmic microwave background maps. Astrophys. J. 184(2),  264 (2009), http://stacks.iop.org/0067-0049/184/i=2/a=264

  47. Feldbrugge, J., van Engelen, M., van de Weygaert, R., Pranav, P., Vegter, G.: Stochastic homology of gaussian vs. non-gaussian random fields: graphs towards betti numbers and persistence diagrams. JCAP 1909(09), 052 (2019). https://doi.org/10.1088/1475-7516/2019/09/052

  48. Gay, C., Pichon, C., Pogosyan, D.: Non-Gaussian statistics of critical sets in 2 and 3D: Peaks, voids, saddles, genus and skeleton. Phys. Rev. D 85, 023011 (2012). https://doi.org/10.1103/PhysRevD.85.023011

    CrossRef  ADS  Google Scholar 

  49. Gay, C., Pichon, C., Pogosyan, D.: Non-gaussian statistics of critical sets in 2d and 3d: Peaks, voids, saddles, genus, and skeleton. Phys. Rev. D 85(2), 023011 (2012)

    CrossRef  ADS  Google Scholar 

  50. Gmeiner, F., Blumenhagen, R., Honecker, G., Lust, D., Weigand, T.: One in a billion: MSSM-like D-brane statistics. JHEP 01, 004 (2006). https://doi.org/10.1088/1126-6708/2006/01/004

    CrossRef  ADS  MathSciNet  Google Scholar 

  51. Gukov, S., Vafa, C., Witten, E.: CFT’s from Calabi-Yau four folds. Nucl. Phys. B 584, 69–108 (2000). https://doi.org/10.1016/S0550-3213(01)00289-9, https://doi.org/10.1016/S0550-3213(00)00373-4, [Erratum: Nucl. Phys. B608,477(2001)]

  52. Guth, A.H.: Inflationary universe: A possible solution to the horizon and flatness problems. Phys. Rev. D 23, 347–356 (Jan 1981). 10.1103/PhysRevD.23.347, https://link.aps.org/doi/10.1103/PhysRevD.23.347

  53. Guth, A.H., Pi, S.Y.: Fluctuations in the new inflationary universe. Phys. Rev. Lett. 49(15), 1110 (1982)

    CrossRef  ADS  Google Scholar 

  54. Halverson, J., Long, C.: Statistical Predictions in String Theory and Deep Generative Models (2020)

    Google Scholar 

  55. Halverson, J., Long, C., Sung, B.: Algorithmic universality in F-theory compactifications. Phys. Rev. D 96(12), 126006 (2017). https://doi.org/10.1103/PhysRevD.96.126006

    CrossRef  ADS  MathSciNet  Google Scholar 

  56. Halverson, J., Nelson, B., Ruehle, F.: Branes with Brains: Exploring String Vacua with Deep Reinforcement Learning. JHEP 06, 003 (2019). https://doi.org/10.1007/JHEP06(2019)003

    CrossRef  ADS  MathSciNet  MATH  Google Scholar 

  57. Hatcher, A.: Algebraic Topology. Cambridge University Press (2002)

    Google Scholar 

  58. Hawking, S.: The development of irregularities in a single bubble inflationary universe. Phys. Lett. B 115(4), 295–297 (1982)

    Google Scholar 

  59. He, Y.H.: Deep-Learning the Landscape (2017)

    Google Scholar 

  60. He, Y.H.: The Calabi-Yau Landscape: from Geometry, to Physics, to Machine-Learning (2018)

    Google Scholar 

  61. Hikage, C., Komatsu, E., Matsubara, T.: Primordial Non-Gaussianity and Analytical Formula for Minkowski Functionals of the Cosmic Microwave Background and Large-scale Structure. Astrophys. J. 653, 11–26 (2006). https://doi.org/10.1086/508653

    CrossRef  ADS  Google Scholar 

  62. Hofer, C., Kwitt, R., Dixit, M., Niethammer, M.: Connectivity-optimized representation learning via persistent homology. arXiv preprint arXiv:1906.09003 (2019)

  63. Hofer, C., Kwitt, R., Niethammer, M., Uhl, A.: Deep learning with topological signatures. In: Advances in Neural Information Processing Systems. pp. 1634–1644 (2017)

    Google Scholar 

  64. Kallosh, R., Linde, A.D.: Landscape, the scale of SUSY breaking, and inflation. JHEP 12, 004 (2004). https://doi.org/10.1088/1126-6708/2004/12/004

    CrossRef  ADS  MathSciNet  Google Scholar 

  65. Kim, K., Kim, J., Kim, J.S., Chazal, F., Wasserman, L.: Efficient topological layer based on persistent landscapes. arXiv preprint arXiv:2002.02778 (2020)

  66. Kimura, Y., Imai, K.: Quantification of lss using the persistent homology in the sdss fields. Adv. Space Res. 60(3), 722–736 (2017)

    CrossRef  ADS  Google Scholar 

  67. Klaewer, D., Schlechter, L.: Machine Learning Line Bundle Cohomologies of Hypersurfaces in Toric Varieties (2018)

    Google Scholar 

  68. Klypin, A., Shandarin, S.F.: Percolation technique for galaxy clustering. Astrophys. J. 413, 48–58 (1993)

    CrossRef  ADS  Google Scholar 

  69. Komatsu, E., Spergel, D.N.: Acoustic signatures in the primary microwave background bispectrum. Phys. Rev. D 63, 063002 (2001). https://doi.org/10.1103/PhysRevD.63.063002

    CrossRef  ADS  Google Scholar 

  70. Krefl, D., Seong, R.K.: Machine Learning of Calabi-Yau Volumes. Phys. Rev. D 96(6), 066014 (2017). https://doi.org/10.1103/PhysRevD.96.066014

    CrossRef  ADS  MathSciNet  Google Scholar 

  71. Liguori, M., Hansen, F.K., Komatsu, E., Matarrese, S., Riotto, A.: Testing primordial non-gaussianity in cmb anisotropies. Phys. Rev. D 73, 043505 (2006). https://doi.org/10.1103/PhysRevD.73.043505

    CrossRef  ADS  Google Scholar 

  72. Linde, A.D.: A new inflationary universe scenario: a possible solution of the horizon, flatness, homogeneity, isotropy and primordial monopole problems. Phys. Lett. 108B, 389–393 (1982). https://doi.org/10.1016/0370-2693(82)91219-9

  73. Maldacena, J.M.: Non-Gaussian features of primordial fluctuations in single field inflationary models. JHEP 05, 013 (2003). https://doi.org/10.1088/1126-6708/2003/05/013

    CrossRef  ADS  MathSciNet  Google Scholar 

  74. Marchesano, F., Shiu, G., Wang, L.T.: Model building and phenomenology of flux-induced supersymmetry breaking on D3-branes. Nucl. Phys. B 712, 20–58 (2005). https://doi.org/10.1016/j.nuclphysb.2005.01.046

    CrossRef  ADS  MathSciNet  MATH  Google Scholar 

  75. Matsubara, T.: Analytic minkowski functionals of the cosmic microwave background: second-order non-gaussianity with bispectrum and trispectrum. Phys. Rev. D 81, 083505 (2010). https://doi.org/10.1103/PhysRevD.81.083505

  76. Mecke, K.R., Buchert, T., Wagner, H.: Robust morphological measures for large scale structure in the universe. Astron. Astrophys. 288, 697–704 (1994)

    ADS  Google Scholar 

  77. Milnor, J.: Morse theory (AM-51), vol. 51. Princeton University Press (2016)

    Google Scholar 

  78. Mütter, A., Parr, E., Vaudrevange, P.K.S.: Deep learning in the heterotic orbifold landscape (2018)

    Google Scholar 

  79. Mukhanov, V.F.: Gravitational instability of the universe filled with a scalar field. JETP Lett. 41(9), 493–496 (1985)

    ADS  Google Scholar 

  80. Mukhanov, V.F., Chibisov, G.: Quantum fluctuations and a nonsingular universe. JETP Lett. 33(10), 532–535 (1981)

    ADS  Google Scholar 

  81. Mukhanov, V.F., Chibisov, G.: Vacuum energy and large-scale structure of the universe. Sov. Phys.-JETP (Engl. Transl.);(United States) 56(2) (1982)

    Google Scholar 

  82. Munkres, J.R.: Elements of Algebraic Topology. CRC Press (2018)

    Google Scholar 

  83. Perea, J.A.: A Brief History of Persistence. ArXiv e-prints (Sep 2018)

    Google Scholar 

  84. Poulenard, A., Skraba, P., Ovsjanikov, M.: Topological function optimization for continuous shape matching. In: Computer Graphics Forum. vol. 37, pp. 13–25. Wiley Online Library (2018)

    Google Scholar 

  85. Pranav, P., Adler, R.J., Buchert, T., Edelsbrunner, H., Jones, B.J.T., Schwartzman, A., Wagner, H., van de Weygaert, R.: Unexpected topology of the temperature fluctuations in the cosmic microwave background. Astron. Astrophys. 627, A163 (2019). https://doi.org/10.1051/0004-6361/201834916

    CrossRef  Google Scholar 

  86. Pranav, P., Edelsbrunner, H., van de Weygaert, R., Vegter, G., Kerber, M., Jones, B.J.T., Wintraecken, M.: The topology of the cosmic web in terms of persistent betti numbers. Mon. Not. Roy. Astron. Soc. 465(4), 4281–4310 (2017). https://doi.org/10.1093/mnras/stw2862

    CrossRef  ADS  Google Scholar 

  87. Pranav, P., van de Weygaert, R., Vegter, G., Jones, B.J.T., Adler, R.J., Feldbrugge, J., Park, C., Buchert, T., Kerber, M.: Topology and geometry of gaussian random fields i: on betti numbers, euler characteristic and minkowski functionals. Mon. Not. Roy. Astron. Soc. 485(3), 4167–4208 (2019). https://doi.org/10.1093/mnras/stz541

    CrossRef  ADS  Google Scholar 

  88. Ruehle, F.: Evolving neural networks with genetic algorithms to study the String Landscape. JHEP 08, 038 (2017). https://doi.org/10.1007/JHEP08(2017)038

    CrossRef  ADS  MathSciNet  MATH  Google Scholar 

  89. Ruehle, F.: Data science applications to string theory. Phys. Rep. (2019)

    Google Scholar 

  90. Schmalzing, J., Gorski, K.M.: Minkowski functionals used in the morphological analysis of cosmic microwave background anisotropy maps. Mod. Not. R Astron. Soc. 297, 355–365 (1998). https://doi.org/10.1046/j.1365-8711.1998.01467.x

    CrossRef  ADS  Google Scholar 

  91. Schmalzing, J., Buchert, T.: Beyond genus statistics: a unifying approach to the morphology of cosmic structure. Astrophys. J. Lett. 482(1), L1 (1997), http://stacks.iop.org/1538-4357/482/i=1/a=L1

  92. Schneider, A., Teyssier, R., Potter, D., Stadel, J., Onions, J., Reed, D.S., Smith, R.E., Springel, V., Pearce, F.R., Scoccimarro, R.: Matter power spectrum and the challenge of percent accuracy. JCAP 1604(04), 047 (2016). https://doi.org/10.1088/1475-7516/2016/04/047

    CrossRef  ADS  Google Scholar 

  93. Sousbie, T.: DisPerSE: robust structure identification in 2D and 3D (2013)

    Google Scholar 

  94. Starobinsky, A.A.: A new type of isotropic cosmological models without singularity. Phys. Lett. 91B, 99–102 (1980). https://doi.org/10.1016/0370-2693(80)90670-X

    CrossRef  ADS  MATH  Google Scholar 

  95. Starobinsky, A.A.: Dynamics of phase transition in the new inflationary universe scenario and generation of perturbations. Phys. Lett. B 117(3–4), 175–178 (1982)

    CrossRef  ADS  Google Scholar 

  96. Susskind, L.: Supersymmetry breaking in the anthropic landscape 1745–1749, (2004)

    Google Scholar 

  97. Szegedy, C., Zaremba, W., Sutskever, I., Bruna, J., Erhan, D., Goodfellow, I., Fergus, R.: Intriguing properties of neural networks. arXiv preprint arXiv:1312.6199 (2013)

  98. Taylor, W., Wang, Y.N.: The F-theory geometry with most flux vacua. JHEP 12, 164 (2015). https://doi.org/10.1007/JHEP12(2015)164

    CrossRef  ADS  MathSciNet  MATH  Google Scholar 

  99. Vafa, C.: The String landscape and the swampland (2005)

    Google Scholar 

  100. Wang, Y.N., Zhang, Z.: Learning non-Higgsable gauge groups in 4D F-theory (2018)

    Google Scholar 

  101. van de Weygaert, R., Pranav, P., Jones, B.J., Bos, E., Vegter, G., Edelsbrunner, H., Teillaud, M., Hellwing, W.A., Park, C., Hidding, J., et al.: Probing dark energy with alpha shapes and betti numbers. arXiv preprint arXiv:1110.5528 (2011)

  102. Winitzki, S., Kosowsky, A.: Minkowski functional description of microwave background gaussianity. New Astron. 3(2), 75–99 (1998). https://doi.org/10.1016/S1384-1m076(97)00046-8, http://www.sciencedirect.com/science/article/pii/S1384107697000468

  103. Zomorodian, A.J.: Topology for computing, vol. 16. Cambridge University Press (2005)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gary Shiu .

Editor information

Editors and Affiliations

Ethics declarations

Views and opinions expressed are those of the authors and do not necessarily represent official positions of their respective companies.

Rights and permissions

Reprints and Permissions

Copyright information

© 2021 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Cole, A., Shiu, G. (2021). Towards the “Shape” of Cosmological Observables and the String Theory Landscape with Topological Data Analysis. In: Nielsen, F. (eds) Progress in Information Geometry. Signals and Communication Technology. Springer, Cham. https://doi.org/10.1007/978-3-030-65459-7_9

Download citation