Abstract
Persistent homology is a technique from Topological Data Analysis that computes the multiscale “shape” of a data set. We review the basic formalism of persistent homology as well as several applications to cosmology and string theory. We describe how persistent homology provides efficient and robust morphological summaries of cosmological observables including the Cosmic Microwave Background and Large-Scale Structure, and how statistical pipelines involving persistent homology can potentially constrain cosmological parameters. We also review the string theory landscape as an interesting data set displaying complex features in high-dimensional spaces, and thus an ideal setting for persistent homology. We describe the characterization of distributions of flux vacua using persistent homology.
Keywords
- Topological Data Analysis
- Persistent homology
- Inflationary cosmology
- Cosmic microwave background
- Large scale structure
- Non-gaussianity
- String landscape
This research was supported in part by the DOE grant DE-SC0017647, the Heising-Simons Foundation, the Simons Foundation, National Science Foundation Grant No. NSF PHY-1748958, and the Kellett Award of the University of Wisconsin. GS gratefully acknowledges the hospitality of the Kavli Institute for Theoretical Physics during the final stage of this work. AC is grateful to have been supported by a Straka Fellowship at UW-Madison.
This is a preview of subscription content, access via your institution.
Buying options
Tax calculation will be finalised at checkout
Purchases are for personal use only
Learn about institutional subscriptionsNotes
- 1.
One may also consider (persistent) homology defined over other coefficient fields. For simplicity, we restrict to \(\mathbb {Z}_2\). In fact, this is the most efficient choice if the underlying space does not have torsion, and the results computed for \(\mathbb {Z}_2\) can be translated to homology over other coefficient fields. See Sect. 4.3 of [103] for a discussion.
- 2.
Strictly speaking, the 0-th homology group counts the independent components of the simplicial complex, i.e. disconnected clusters.
- 3.
Strictly speaking, to use the simplcial machinery we have considered so far, M and f are suitably discretized.
- 4.
As was also described in Sect. 9.2, the distinction between “point-like” and “field-like” observables is somewhat artificial, since collections of points can be used to define “field-like” observables and vice versa. In practice, however, transforming between these viewpoints may require nontrivial assumptions about the underlying physics, for examples regarding the bias of various tracers.
- 5.
References
Abel, S., Rizos, J.: Genetic algorithms and the search for viable string vacua. JHEP 08, 010 (2014). https://doi.org/10.1007/JHEP08(2014)010
Acharya, B.S., Denef, F., Valandro, R.: Statistics of M theory vacua. JHEP 06, 056 (2005). https://doi.org/10.1088/1126-6708/2005/06/056
Ackley, D.H., Hinton, G.E., Sejnowski, T.J.: A learning algorithm for boltzmann machines. Cogn. Sci. 9(1), 147–169 (1985)
Adams, H., Emerson, T., Kirby, M., Neville, R., Peterson, C., Shipman, P., Chepushtanova, S., Hanson, E., Motta, F., Ziegelmeier, L.: Persistence images: a stable vector representation of persistent homology. J. Mach. Learn. Res. 18(1), 218–252 (2017)
Ade, P.A.R., et al.: Planck 2015 results XVII constraints on primordial non-gaussianity. Astron. Astrophys. 594, A17 (2016). https://doi.org/10.1051/0004-6361/201525836
Albrecht, A., Steinhardt, P.J.: Cosmology for grand unified theories with radiatively induced symmetry breaking. Phys. Rev. Lett. 48, 1220–1223 (1982). https://doi.org/10.1103/PhysRevLett.48.1220
Ashmore, A., He, Y.H., Ovrut, B.A.: Machine learning Calabi-Yau metrics (2019)
Ashok, S., Douglas, M.R.: Counting flux vacua. JHEP 01, 060 (2004). https://doi.org/10.1088/1126-6708/2004/01/060
Babich, D., Creminelli, P., Zaldarriaga, M.: The shape of non-gaussianities. JCAP 0408, 009 (2004). https://doi.org/10.1088/1475-7516/2004/08/009
Banks, T., Dine, M., Gorbatov, E.: Is there a string theory landscape? JHEP 08, 058 (2004). https://doi.org/10.1088/1126-6708/2004/08/058
Bardeen, J.M., Steinhardt, P.J., Turner, M.S.: Spontaneous creation of almost scale-free density perturbations in an inflationary universe. Phys. Rev. D 28(4), 679 (1983)
Biagetti, M., Cole, A., Shiu, G.: The persistence of large scale structures I: primordial non-gaussianity 9, (2020)
Bond, J.R., Kofman, L., Pogosyan, D.: How filaments of galaxies are woven into the cosmic web. Nature 380(6575), 603–606 (1996)
Bousso, R., Polchinski, J.: Quantization of four form fluxes and dynamical neutralization of the cosmological constant. JHEP 06, 006 (2000). https://doi.org/10.1088/1126-6708/2000/06/006
Brüel-Gabrielsson, R., Nelson, B.J., Dwaraknath, A., Skraba, P., Guibas, L.J., Carlsson, G.: A topology layer for machine learning. arXiv preprint arXiv:1905.12200 (2019)
Bubenik, P.: Statistical topological data analysis using persistence landscapes. J. Mach. Learn. Res. 16(1), 77–102 (2015)
Bull, K., He, Y.H., Jejjala, V., Mishra, C.: Machine learning CICY threefolds (2018)
Bull, K., He, Y.H., Jejjala, V., Mishra, C.: Getting CICY high. Phys. Lett. B795, 700–706 (2019). https://doi.org/10.1016/j.physletb.2019.06.067
Carifio, J., Halverson, J., Krioukov, D., Nelson, B.D.: Machine learning in the string landscape. JHEP 09, 157 (2017). https://doi.org/10.1007/JHEP09(2017)157
Carriere, M., Chazal, F., Ike, Y., Lacombe, T., Royer, M., Umeda, Y.: Perslay: a neural network layer for persistence diagrams and new graph topological signatures. Stat 1050, 17 (2019)
Chazal, F., Michel, B.: An introduction to topological data analysis: fundamental and practical aspects for data scientists. arXiv preprint arXiv:1710.04019 (2017)
Chen, X., Huang, M.x., Kachru, S., Shiu, G.: Observational signatures and non-Gaussianities of general single field inflation. JCAP 0701, 002 (2007). https://doi.org/10.1088/1475-7516/2007/01/002
Chingangbam, P., Park, C., Yogendran, K.P., van de Weygaert, R.: Hot and cold spot counts as probes of non-gaussianity in the cosmic microwave background. Astrophys. J. 755, 122 (2012). https://doi.org/10.1088/0004-637X/755/2/122
Cirafici, M.: Persistent homology and string vacua. JHEP 03, 045 (2016). https://doi.org/10.1007/JHEP03(2016)045
Codis, S., Pogosyan, D., Pichon, C.: On the connectivity of the cosmic web: theory and implications for cosmology and galaxy formation. Mon. Not. Roy. Astron. Soc. 479(1), 973–993 (2018). https://doi.org/10.1093/mnras/sty1643, https://doi.org/10.1093/mnras/stz3535, [Erratum: Mon. Not. Roy. Astron. Soc.491, no.4,5794(2020)]
Cohen-Steiner, D., Edelsbrunner, H., Harer, J.: Stability of persistence diagrams. Discrete Comput. Geom. 37(1), 103–120 (2007)
Cole, A., Loges, G.J., Shiu, G.: Quantitative and interpretable order parameters for phase transitions from persistent homology 9 (2020)
Cole, A., Schachner, A., Shiu, G.: Searching the Landscape of Flux Vacua with Genetic Algorithms. JHEP 11, 045 (2019). https://doi.org/10.1007/JHEP11(2019)045
Cole, A., Shiu, G.: Persistent homology and non-gaussianit. JCAP 1803(03), 025 (2018). https://doi.org/10.1088/1475-7516/2018/03/025
Cole, A., Shiu, G.: Topological data analysis for the string landscape. JHEP 03, 054 (2019). https://doi.org/10.1007/JHEP03(2019)054
Conlon, J.P., Quevedo, F.: On the explicit construction and statistics of Calabi-Yau flux vacua. JHEP 10, 039 (2004). https://doi.org/10.1088/1126-6708/2004/10/039
Constantin, A., He, Y.H., Lukas, A.: Counting String Theory Standard Models (2018)
De Silva, V., Carlsson, G.E.: Topological estimation using witness complexes. SPBG 4, 157–166 (2004)
Denef, F., Douglas, M.R.: Distributions of flux vacua. JHEP 05, 072 (2004). https://doi.org/10.1088/1126-6708/2004/05/072
Denef, F., Douglas, M.R.: Distributions of nonsupersymmetric flux vacua. JHEP 03, 061 (2005). https://doi.org/10.1088/1126-6708/2005/03/061
DeWolfe, O., Giryavets, A., Kachru, S., Taylor, W.: Enumerating flux vacua with enhanced symmetries. JHEP 02, 037 (2005). https://doi.org/10.1088/1126-6708/2005/02/037
Dienes, K.R.: Statistics on the heterotic landscape: Gauge groups and cosmological constants of four-dimensional heterotic strings. Phys. Rev. D 73, 106010 (2006). https://doi.org/10.1103/PhysRevD.73.106010
Dine, M., O’Neil, D., Sun, Z.: Branches of the landscape. JHEP 07, 014 (2005). https://doi.org/10.1088/1126-6708/2005/07/014
Dine, M., Gorbatov, E., Thomas, S.D.: Low energy supersymmetry from the landscape. JHEP 08, 098 (2008). https://doi.org/10.1088/1126-6708/2008/08/098
Douglas, M.R.: The Statistics of string / M theory vacua. JHEP 05, 046 (2003). https://doi.org/10.1088/1126-6708/2003/05/046
Douglas, M.R.: Statistical analysis of the supersymmetry breaking scale (2004)
Douglas, M.R., Shiffman, B., Zelditch, S.: Critical points and supersymmetric vacua. Commun. Math. Phys. 252, 325–358 (2004). https://doi.org/10.1007/s00220-004-1228-y
Douglas, M.R., Taylor, W.: The Landscape of intersecting brane models. JHEP 01, 031 (2007). https://doi.org/10.1088/1126-6708/2007/01/031
Edelsbrunner, H., Harer, J.: Computational topology: an introduction. Am. Math. Soc. (2010)
Elbers, W., van de Weygaert, R.: Persistent topology of the reionization bubble network – i. formalism and phenomenology. Mon. Not. Roy. Astron. Soc. 486(2), 1523–1538 (2019). https://doi.org/10.1093/mnras/stz908
Elsner, F., Wandelt, B.D.: Improved simulation of non-gaussian temperature and polarization cosmic microwave background maps. Astrophys. J. 184(2), 264 (2009), http://stacks.iop.org/0067-0049/184/i=2/a=264
Feldbrugge, J., van Engelen, M., van de Weygaert, R., Pranav, P., Vegter, G.: Stochastic homology of gaussian vs. non-gaussian random fields: graphs towards betti numbers and persistence diagrams. JCAP 1909(09), 052 (2019). https://doi.org/10.1088/1475-7516/2019/09/052
Gay, C., Pichon, C., Pogosyan, D.: Non-Gaussian statistics of critical sets in 2 and 3D: Peaks, voids, saddles, genus and skeleton. Phys. Rev. D 85, 023011 (2012). https://doi.org/10.1103/PhysRevD.85.023011
Gay, C., Pichon, C., Pogosyan, D.: Non-gaussian statistics of critical sets in 2d and 3d: Peaks, voids, saddles, genus, and skeleton. Phys. Rev. D 85(2), 023011 (2012)
Gmeiner, F., Blumenhagen, R., Honecker, G., Lust, D., Weigand, T.: One in a billion: MSSM-like D-brane statistics. JHEP 01, 004 (2006). https://doi.org/10.1088/1126-6708/2006/01/004
Gukov, S., Vafa, C., Witten, E.: CFT’s from Calabi-Yau four folds. Nucl. Phys. B 584, 69–108 (2000). https://doi.org/10.1016/S0550-3213(01)00289-9, https://doi.org/10.1016/S0550-3213(00)00373-4, [Erratum: Nucl. Phys. B608,477(2001)]
Guth, A.H.: Inflationary universe: A possible solution to the horizon and flatness problems. Phys. Rev. D 23, 347–356 (Jan 1981). 10.1103/PhysRevD.23.347, https://link.aps.org/doi/10.1103/PhysRevD.23.347
Guth, A.H., Pi, S.Y.: Fluctuations in the new inflationary universe. Phys. Rev. Lett. 49(15), 1110 (1982)
Halverson, J., Long, C.: Statistical Predictions in String Theory and Deep Generative Models (2020)
Halverson, J., Long, C., Sung, B.: Algorithmic universality in F-theory compactifications. Phys. Rev. D 96(12), 126006 (2017). https://doi.org/10.1103/PhysRevD.96.126006
Halverson, J., Nelson, B., Ruehle, F.: Branes with Brains: Exploring String Vacua with Deep Reinforcement Learning. JHEP 06, 003 (2019). https://doi.org/10.1007/JHEP06(2019)003
Hatcher, A.: Algebraic Topology. Cambridge University Press (2002)
Hawking, S.: The development of irregularities in a single bubble inflationary universe. Phys. Lett. B 115(4), 295–297 (1982)
He, Y.H.: Deep-Learning the Landscape (2017)
He, Y.H.: The Calabi-Yau Landscape: from Geometry, to Physics, to Machine-Learning (2018)
Hikage, C., Komatsu, E., Matsubara, T.: Primordial Non-Gaussianity and Analytical Formula for Minkowski Functionals of the Cosmic Microwave Background and Large-scale Structure. Astrophys. J. 653, 11–26 (2006). https://doi.org/10.1086/508653
Hofer, C., Kwitt, R., Dixit, M., Niethammer, M.: Connectivity-optimized representation learning via persistent homology. arXiv preprint arXiv:1906.09003 (2019)
Hofer, C., Kwitt, R., Niethammer, M., Uhl, A.: Deep learning with topological signatures. In: Advances in Neural Information Processing Systems. pp. 1634–1644 (2017)
Kallosh, R., Linde, A.D.: Landscape, the scale of SUSY breaking, and inflation. JHEP 12, 004 (2004). https://doi.org/10.1088/1126-6708/2004/12/004
Kim, K., Kim, J., Kim, J.S., Chazal, F., Wasserman, L.: Efficient topological layer based on persistent landscapes. arXiv preprint arXiv:2002.02778 (2020)
Kimura, Y., Imai, K.: Quantification of lss using the persistent homology in the sdss fields. Adv. Space Res. 60(3), 722–736 (2017)
Klaewer, D., Schlechter, L.: Machine Learning Line Bundle Cohomologies of Hypersurfaces in Toric Varieties (2018)
Klypin, A., Shandarin, S.F.: Percolation technique for galaxy clustering. Astrophys. J. 413, 48–58 (1993)
Komatsu, E., Spergel, D.N.: Acoustic signatures in the primary microwave background bispectrum. Phys. Rev. D 63, 063002 (2001). https://doi.org/10.1103/PhysRevD.63.063002
Krefl, D., Seong, R.K.: Machine Learning of Calabi-Yau Volumes. Phys. Rev. D 96(6), 066014 (2017). https://doi.org/10.1103/PhysRevD.96.066014
Liguori, M., Hansen, F.K., Komatsu, E., Matarrese, S., Riotto, A.: Testing primordial non-gaussianity in cmb anisotropies. Phys. Rev. D 73, 043505 (2006). https://doi.org/10.1103/PhysRevD.73.043505
Linde, A.D.: A new inflationary universe scenario: a possible solution of the horizon, flatness, homogeneity, isotropy and primordial monopole problems. Phys. Lett. 108B, 389–393 (1982). https://doi.org/10.1016/0370-2693(82)91219-9
Maldacena, J.M.: Non-Gaussian features of primordial fluctuations in single field inflationary models. JHEP 05, 013 (2003). https://doi.org/10.1088/1126-6708/2003/05/013
Marchesano, F., Shiu, G., Wang, L.T.: Model building and phenomenology of flux-induced supersymmetry breaking on D3-branes. Nucl. Phys. B 712, 20–58 (2005). https://doi.org/10.1016/j.nuclphysb.2005.01.046
Matsubara, T.: Analytic minkowski functionals of the cosmic microwave background: second-order non-gaussianity with bispectrum and trispectrum. Phys. Rev. D 81, 083505 (2010). https://doi.org/10.1103/PhysRevD.81.083505
Mecke, K.R., Buchert, T., Wagner, H.: Robust morphological measures for large scale structure in the universe. Astron. Astrophys. 288, 697–704 (1994)
Milnor, J.: Morse theory (AM-51), vol. 51. Princeton University Press (2016)
Mütter, A., Parr, E., Vaudrevange, P.K.S.: Deep learning in the heterotic orbifold landscape (2018)
Mukhanov, V.F.: Gravitational instability of the universe filled with a scalar field. JETP Lett. 41(9), 493–496 (1985)
Mukhanov, V.F., Chibisov, G.: Quantum fluctuations and a nonsingular universe. JETP Lett. 33(10), 532–535 (1981)
Mukhanov, V.F., Chibisov, G.: Vacuum energy and large-scale structure of the universe. Sov. Phys.-JETP (Engl. Transl.);(United States) 56(2) (1982)
Munkres, J.R.: Elements of Algebraic Topology. CRC Press (2018)
Perea, J.A.: A Brief History of Persistence. ArXiv e-prints (Sep 2018)
Poulenard, A., Skraba, P., Ovsjanikov, M.: Topological function optimization for continuous shape matching. In: Computer Graphics Forum. vol. 37, pp. 13–25. Wiley Online Library (2018)
Pranav, P., Adler, R.J., Buchert, T., Edelsbrunner, H., Jones, B.J.T., Schwartzman, A., Wagner, H., van de Weygaert, R.: Unexpected topology of the temperature fluctuations in the cosmic microwave background. Astron. Astrophys. 627, A163 (2019). https://doi.org/10.1051/0004-6361/201834916
Pranav, P., Edelsbrunner, H., van de Weygaert, R., Vegter, G., Kerber, M., Jones, B.J.T., Wintraecken, M.: The topology of the cosmic web in terms of persistent betti numbers. Mon. Not. Roy. Astron. Soc. 465(4), 4281–4310 (2017). https://doi.org/10.1093/mnras/stw2862
Pranav, P., van de Weygaert, R., Vegter, G., Jones, B.J.T., Adler, R.J., Feldbrugge, J., Park, C., Buchert, T., Kerber, M.: Topology and geometry of gaussian random fields i: on betti numbers, euler characteristic and minkowski functionals. Mon. Not. Roy. Astron. Soc. 485(3), 4167–4208 (2019). https://doi.org/10.1093/mnras/stz541
Ruehle, F.: Evolving neural networks with genetic algorithms to study the String Landscape. JHEP 08, 038 (2017). https://doi.org/10.1007/JHEP08(2017)038
Ruehle, F.: Data science applications to string theory. Phys. Rep. (2019)
Schmalzing, J., Gorski, K.M.: Minkowski functionals used in the morphological analysis of cosmic microwave background anisotropy maps. Mod. Not. R Astron. Soc. 297, 355–365 (1998). https://doi.org/10.1046/j.1365-8711.1998.01467.x
Schmalzing, J., Buchert, T.: Beyond genus statistics: a unifying approach to the morphology of cosmic structure. Astrophys. J. Lett. 482(1), L1 (1997), http://stacks.iop.org/1538-4357/482/i=1/a=L1
Schneider, A., Teyssier, R., Potter, D., Stadel, J., Onions, J., Reed, D.S., Smith, R.E., Springel, V., Pearce, F.R., Scoccimarro, R.: Matter power spectrum and the challenge of percent accuracy. JCAP 1604(04), 047 (2016). https://doi.org/10.1088/1475-7516/2016/04/047
Sousbie, T.: DisPerSE: robust structure identification in 2D and 3D (2013)
Starobinsky, A.A.: A new type of isotropic cosmological models without singularity. Phys. Lett. 91B, 99–102 (1980). https://doi.org/10.1016/0370-2693(80)90670-X
Starobinsky, A.A.: Dynamics of phase transition in the new inflationary universe scenario and generation of perturbations. Phys. Lett. B 117(3–4), 175–178 (1982)
Susskind, L.: Supersymmetry breaking in the anthropic landscape 1745–1749, (2004)
Szegedy, C., Zaremba, W., Sutskever, I., Bruna, J., Erhan, D., Goodfellow, I., Fergus, R.: Intriguing properties of neural networks. arXiv preprint arXiv:1312.6199 (2013)
Taylor, W., Wang, Y.N.: The F-theory geometry with most flux vacua. JHEP 12, 164 (2015). https://doi.org/10.1007/JHEP12(2015)164
Vafa, C.: The String landscape and the swampland (2005)
Wang, Y.N., Zhang, Z.: Learning non-Higgsable gauge groups in 4D F-theory (2018)
van de Weygaert, R., Pranav, P., Jones, B.J., Bos, E., Vegter, G., Edelsbrunner, H., Teillaud, M., Hellwing, W.A., Park, C., Hidding, J., et al.: Probing dark energy with alpha shapes and betti numbers. arXiv preprint arXiv:1110.5528 (2011)
Winitzki, S., Kosowsky, A.: Minkowski functional description of microwave background gaussianity. New Astron. 3(2), 75–99 (1998). https://doi.org/10.1016/S1384-1m076(97)00046-8, http://www.sciencedirect.com/science/article/pii/S1384107697000468
Zomorodian, A.J.: Topology for computing, vol. 16. Cambridge University Press (2005)
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Ethics declarations
Views and opinions expressed are those of the authors and do not necessarily represent official positions of their respective companies.
Rights and permissions
Copyright information
© 2021 Springer Nature Switzerland AG
About this chapter
Cite this chapter
Cole, A., Shiu, G. (2021). Towards the “Shape” of Cosmological Observables and the String Theory Landscape with Topological Data Analysis. In: Nielsen, F. (eds) Progress in Information Geometry. Signals and Communication Technology. Springer, Cham. https://doi.org/10.1007/978-3-030-65459-7_9
Download citation
DOI: https://doi.org/10.1007/978-3-030-65459-7_9
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-030-65458-0
Online ISBN: 978-3-030-65459-7
eBook Packages: Physics and AstronomyPhysics and Astronomy (R0)