Skip to main content

Impact of Local Urban Climate on Building Energy Performance: Case Studies in Mendoza, Argentina

  • Chapter
  • First Online:
Urban Microclimate Modelling for Comfort and Energy Studies

Abstract

Building thermal performance and its energy consumption are affected by the energy exchange processes taking place between the outer skin or envelope of the building and the surrounding environment. It is a dynamic system in which there are continuous changes in a daily and seasonal range. Quantity and quality of the exposed envelope as well as albedo, vegetation, and urban geometry are significant factors in determining the impact of urban microclimates on energy building consumption. Existing buildings and their microclimates can be monitored in situ. This practice is very useful but time and resource consuming. Only some punctual cases can be evaluated thoroughly, and it is impossible to measure buildings that are still in project. Building energy simulation (BES) programs are capable of modelling building energy performance in detail in a dynamic model. The weather variables in an urban microclimate may be subtly different from the conditions prevailing over the area as a whole. Nevertheless, the input of meteorological conditions is usually taken from long-term averages provided by local weather stations. These data series ignore the modifying effect on the surroundings. This chapter presents a case study in a high-density area in the city of Mendoza, Argentina, in which year-round in situ measurements of temperature, humidity, radiation, and air movement were taken in two different scales: within the streets in a neighborhood and outside and inside a building. The micro-urban scale and the building scale were covered. A specific weather file was created for each scale, to be integrated in simulation software ENVI-met and EnergyPlus, respectively. Models were calibrated with the monitored data, to be run again with the information provided by local weather stations. Also, as a third term of comparison, the simulation workflow moves from the micro-urban- to a building-scale assessment by linking the ENVI-met software microclimatic results to the building energy simulation program EnergyPlus. Results obtained (a) with the local weather stations average climate input, (b) with the on-site microclimatic measurements, and (c) with ENVI-met software are compared in order to assess each case reliability in assessing the impact of local urban climate on building energy performance. Simulated-monitored results present differences of ±3.5%. This study reveals the capabilities and advantages of working with this tool for the generation of microclimatic data, which when integrated with EnergyPlus presents a less expensive and fast alternative to in situ monitoring.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Abbasabadi, N., & Ashayeri, M. (2019). Urban energy use modeling methods and tools: A review and an outlook. Building and Environment, 161, 106270.

    Article  Google Scholar 

  • Alchapar, N. L., Correa, E. N., & Cantón, M. A. (2014). Classification of building materials used in the urban envelopes according to their capacity for mitigation of the urban heat island in semiarid zones. Energy and Buildings, 69, 22–32.

    Article  Google Scholar 

  • Balter, J. (2015). Sustentabilidad de edificios en altura en Ciudades-Oasis. Características arquitectónicas y ambientales para el caso de la ciudad de Mendoza. PhD thesis. Universidad Nacional de La Plata.

    Google Scholar 

  • Balter, J., Ganem Karlen, C., & Cantón, M. A. (2013). Evolución morfológica y materialización en edificios en altura en la ciudad de Mendoza. Incidencias en el comportamiento térmico interior. Revista Área, 19, 8–25.

    Google Scholar 

  • Balter, J., Alchapar, N. L., Correa, E. N., & Ganem Karlen, C. (2018). Validation of microclimatic model calculated with ENVI-met as a tool for thermal building analysis of EnergyPlus. In Proceedings of the 5th International Congress on Building Simulation. IBPSA—International Building Performance Simulation Association.

    Google Scholar 

  • Bruse, E. (2006). ENVI-met 3.1. On-Line manual. Retrieved from http://www.envi-met.com

  • Cantón, M. A., Mesa, A., Cortegoso, J. L., & de Rosa, C. (2003). Assessing the solar resource in forested urban environments. Architectural Science Review, 24, 115–123.

    Article  Google Scholar 

  • Ciancio, V., Falasca, S., Golasi, I., Curci, G., Coppi, M., & Salata, F. (2018). Influence of input climatic data on simulations of annual energy needs of a building: EnergyPlus and WRF modeling for a case study in Rome (Italy). Energies, 11(10), 2835.

    Article  Google Scholar 

  • Coakley, D., Raftery, P., & Keane, M. (2014). A review of methods to match building energy simulation models to measured data. Renewable and Sustainable Energy Reviews, 37, 123–141.

    Article  Google Scholar 

  • Correa, E. N. (2006). Isla de Calor Urbana. El caso del área metropolitana de Mendoza. PhD thesis. Facultad de Ciencias Exactas. Área Energías Renovables. Universidad Nacional de Salta.

    Google Scholar 

  • Davies, M., Steadman, P., & Oreszczyn, T. (2008). Strategies for the modification of the urban climate and the consequent impact on building energy use. Energy Policy, 36(12), 4548–4551.

    Google Scholar 

  • DOE—Department of Energy US. United Nations Population Division. (2017). World population prospects: The 2017 revision, key findings and advance tables.

    Google Scholar 

  • Ganem Karlen, C. (2006). Rehabilitación ambiental de la envolvente de viviendas. El caso de Mendoza. PhD thesis. Escuela Técnica Superior de Arquitectura de Barcelona. Universidad Politécnica de Cataluña. Barcelona Tech.

    Google Scholar 

  • Grossi Gallegos, H., Nollman, U., Lopardo, R., & Atienza, G. (1983). Evaluación preliminar del recurso solar en Argentina. Actas de 8° ASADES, 1, 179–194.

    Google Scholar 

  • Hong, T., Chen, Y., Luo, X., Lou, N., & Lee, S. H. (2020). Ten questions on urban building energy modelling. Building and Environment, 168, 106508.

    Article  Google Scholar 

  • IEA—International Energy Agency. (2014). World energy outlook 2014.

    Google Scholar 

  • IPCC—International Panel on Climate Change. (2014). Climate change 2014: Synthesis report. Contribution of working groups I, II and III to the fifth assessment report of the Intergovernmental Panel on Climate Change. Geneva: IPCC.

    Book  Google Scholar 

  • Kolher, N., & Hassler, U. (2002). The building stock as a research object. Building Research & Information, 30, 226–236.

    Article  Google Scholar 

  • Kottek, M., Grieser, J., Beck, C., Rudolf, B., & Rubel, F. (2006). World map of the Köppen-Geiger climate classification update. Sustainable United Nations. Meteorologische Zeitschrift, 15, 259–253.

    Article  Google Scholar 

  • Kuo-Tsang, H., & Yi-Jhen, L. (2017). Impact of street canyon typology on building’s peak cooling energy demand. Energy and Buildings, 154, 448–464.

    Article  Google Scholar 

  • Lassandro, P., & di Turi, S. (2019). Multi-criteria and multiscale assessment of building envelope responsibility to rising heat waves. Sustainable Cities and Society, 51, 101755.

    Article  Google Scholar 

  • Lauzet, N., Rodler, A., Musy, M., Azamde, M. H., Guernouti, S., Mauree, D., & Colinart, T. (2019). How building energy models take the local climate into account in an urban context—A review. Renewable and Sustainable Energy Reviews, 116, 109390.

    Article  Google Scholar 

  • Levermore, G., Parkinson, J., Lee, K., Laycock, P., & Lindley, S. (2017). The increasing trend of the urban heat island intensity. Urban Climate, 24, 360–368. https://doi.org/10.1016/j.uclim.2017.02.004.

    Article  Google Scholar 

  • Longobardi, M., & Hancock, M. (2000). Field trip strategies. In Proceedings of TIA, Oxford.

    Google Scholar 

  • Manley, G. (1958). On the frequency of snowfall in metropolitan England. Quarterly Journal of the Royal Meteorological Society, 84(359), 70–72.

    Article  Google Scholar 

  • Martinez, C., Ruiz, M., & Atencio, L. (2017). Proyecto integral de forestación y reforestación urbana para Mendoza. Sustenta-bilidad ambiental del bosque urbano para ciudades de zonas áridas de Argentina—Etapa 1 UNICIPIO—Provincia de Mendoza. Instituto de Ambiente, Hábitat y Energía INAHE – CCT CONICET Mendoza, 1, 96.

    Google Scholar 

  • Mauree, D., Naboni, E., Coccolo, S., Perera, A. T. D., Nik, V. M., & Scartezzini, J. L. (2019). A review of assessment methods for the urban environment and its energy sustainability to guarantee climate adaptation of future cities. Renewable and Sustainable Energy Reviews, 112, 733–746.

    Article  Google Scholar 

  • Moonen, P., Defraeye, T., Dorer, V., Blocken, B., & Carmeliet, J. (2012). Urban physics: Effect of the micro-climate on comfort, health and energy demand. Frontiers of Architectural Research, 1(3), 197–228.

    Article  Google Scholar 

  • Morakinyo, T. E., Dahanayake, K. W. D., Adegun, O. B., & Balogun, A. A. (2016). Modelling the effect of tree shading on summer indoor and outdoor thermal condition of two similar buildings in a Nigerian university. Energy and Buildings, 130, 721–732.

    Article  Google Scholar 

  • OB Org—One Building Organization. (2019). Repository of free climate data for building performance simulation. Retrieved from http://climate.onebuilding.org/

  • Oke, T. R. (2004). Initial guidance to obtain representative meteorological observations at urban sites. Iom Report. Geneva: World Meteorological Organization.

    Google Scholar 

  • Pastore, L., Corrao, R., & Heiselberg, P. K. (2017). The effects of vegetation on indoor thermal comfort: The application of a multi-scale simulation methodology on a residential neighborhood renovation case study. Energy and Buildings, 146, 1–11.

    Article  Google Scholar 

  • Perini, K., Ottelé, M., Giulini, S., Magliocco, A., & Roccotiello, E. (2017). Quantification of fine dust deposition on different plant species in a vertical greening system. Ecological Engineering, 100, 268–276.

    Google Scholar 

  • Ruiz, M. A., Sosa, M. B., Correa, E. N., & Cantón, M. A. (2017). Design tool to improve daytime thermal comfort and nighttime cooling of urban canyon. Landscape and Urban Planning, 167, 249–256.

    Article  Google Scholar 

  • Schwed, D., & Sheng, M. (2017). Assessment of the annual energy demand for cooling of buildings in their urban context in 26 cities in China. Procedia Engineering, 198, 305–312.

    Article  Google Scholar 

  • SMN. Servicio Meteorológico Nacional Argentino [National Weather Service of Argentina] (2019). Fuerza Aérea Argentina. Ministerio de Defensa. 

    Google Scholar 

  • UN. United Nations (2017). United Nations framework convention on climate change, initiatives in the area of human settlements and adaptation. Retrieved from https://unfccc.int/news/rapidurbanization-increases-climate-risk-for-billions-of-people

  • van Hooff, T., Blocken, B., Timmermans, H. J. P., & Hensen, J. L. M. (2016). Analysis of the predicted effect of passive climate adaptation measures on energy demand for cooling and heating in a residential building. Energy, 94, 811–820.

    Article  Google Scholar 

  • Xu, T., Sathaye, J., Akbari, H., Garg, V., & Tetali, V. (2012). Quantifying the direct benefits of cool roofs in an urban setting: Reduced cooling energy use and lowered greenhouse gas emissions. Building and Environment, 48, 1–6.

    Article  Google Scholar 

  • Yang, X., Zhao, L., Bruse, M., & Meng, Q. (2012). An integrated simulation method for building energy performance assessment in urban environments. Energy and Buildings, 54, 243–251.

    Article  Google Scholar 

  • Zinzi, M., Carnielo, E., & Mattonia, B. (2018). On the relation between urban climate and energy performance of buildings. A three-years experience in Rome, Italy. Applied Energy, 221, 148–160.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Carolina Ganem Karlen .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Ganem Karlen, C., Balter, J., Alchapar, N.L. (2021). Impact of Local Urban Climate on Building Energy Performance: Case Studies in Mendoza, Argentina. In: Palme, M., Salvati, A. (eds) Urban Microclimate Modelling for Comfort and Energy Studies. Springer, Cham. https://doi.org/10.1007/978-3-030-65421-4_22

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-65421-4_22

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-65420-7

  • Online ISBN: 978-3-030-65421-4

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics