Skip to main content

Mitigating Dataset Imbalance via Joint Generation and Classification

  • Conference paper
  • First Online:
Computer Vision – ECCV 2020 Workshops (ECCV 2020)

Part of the book series: Lecture Notes in Computer Science ((LNIP,volume 12540))

Included in the following conference series:

Abstract

Supervised deep learning methods are enjoying enormous success in many practical applications of computer vision and have the potential to revolutionize robotics. However, the marked performance degradation to biases and imbalanced data questions the reliability of these methods. In this work we address these questions from the perspective of dataset imbalance resulting out of severe under-representation of annotated training data for certain classes and its effect on both deep classification and generation methods. We introduce a joint dataset repairment strategy by combining a neural network classifier with Generative Adversarial Networks (GAN) that makes up for the deficit of training examples from the under-representated class by producing additional training examples. We show that the combined training helps to improve the robustness of both the classifier and the GAN against severe class imbalance. We show the effectiveness of our proposed approach on three very different datasets with different degrees of imbalance in them. The code is available at https://github.com/AadSah/ImbalanceCycleGAN.

A. Sahoo and A. Singh—contributed equally. The work was done when Ankit Singh was at IIT Kharagpur.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Achille, A., Rovere, M., Soatto, S.: Critical learning periods in deep networks. In: International Conference on Learning Representations (2019)

    Google Scholar 

  2. Antoniou, A., Storkey, A., Edwards, H.: Data augmentation generative adversarial networks. arXiv preprint arXiv:1711.04340 (2017)

  3. Barratt, S., Sharma, R.: A note on the inception score. arXiv preprint arXiv:1801.01973 (2018)

  4. Batista, G.E., Prati, R.C., Monard, M.C.: A study of the behavior of several methods for balancing machine learning training data. SIGKDD Exp. Newsl 6(1), 20–29 (2004)

    Article  Google Scholar 

  5. Buda, M., Maki, A., Mazurowski, M.A.: A systematic study of the class imbalance problem in convolutional neural networks. Neural Netw. 106, 249–259 (2018)

    Article  Google Scholar 

  6. Chawla, N.V., Bowyer, K.W., Hall, L.O., Kegelmeyer, W.P.: SMOTE: synthetic minority over-sampling technique. J. Artif. Intell. Res. 16, 321–357 (2002)

    Article  Google Scholar 

  7. Cui, Y., Jia, M., Lin, T.Y., Song, Y., Belongie, S.: Class-balanced loss based on effective number of samples. In: IEEE Conference on Computer Vision and Pattern Recognition, pp. 9268–9277 (2019)

    Google Scholar 

  8. Drummond, C., Holte, R.C.: C4.5, class imbalance, and cost sensitivity: why under-sampling beats over-sampling. In: Workshop on Learning from Imbalanced Datasets, vol. 11, pp. 1–8 (2003)

    Google Scholar 

  9. Estabrooks, A., Jo, T., Japkowicz, N.: A multiple resampling method for learning from imbalanced data sets. Comput. Intell. 20(1), 18–36 (2004)

    Article  MathSciNet  Google Scholar 

  10. Gao, Y., Beijbom, O., Zhang, N., Darrell, T.: Compact bilinear pooling. In: IEEE Conference on Computer Vision and Pattern Recognition, pp. 317–326 (2016)

    Google Scholar 

  11. Goodfellow, I., et al.: Generative adversarial nets. In: Advances in Neural Information Processing Systems, pp. 2672–2680 (2014)

    Google Scholar 

  12. Haixiang, G., Yijing, L., Shang, J., Mingyun, G., Yuanyue, H., Bing, G.: Learning from class-imbalanced data: review of methods and applications. Exp. Syst. Appl. 73, 220–239 (2017)

    Article  Google Scholar 

  13. Han, H., Wang, W.-Y., Mao, B.-H.: Borderline-SMOTE: a new over-sampling method in imbalanced data sets learning. In: Huang, D.-S., Zhang, X.-P., Huang, G.-B. (eds.) ICIC 2005. LNCS, vol. 3644, pp. 878–887. Springer, Heidelberg (2005). https://doi.org/10.1007/11538059_91

    Chapter  Google Scholar 

  14. He, H., Garcia, E.A.: Learning from imbalanced data. Trans. Knowl. Data Eng. 9, 1263–1284 (2008)

    Google Scholar 

  15. Hendricks, L.A., Burns, K., Saenko, K., Darrell, T., Rohrbach, A.: Women also snowboard: overcoming bias in captioning models. In: Ferrari, V., Hebert, M., Sminchisescu, C., Weiss, Y. (eds.) ECCV 2018. LNCS, vol. 11207, pp. 793–811. Springer, Cham (2018). https://doi.org/10.1007/978-3-030-01219-9_47

    Chapter  Google Scholar 

  16. Horn, G.V., et al.: The iNaturalist species classification and detection dataset. In: IEEE Conference on Computer Vision and Pattern Recognition, pp. 8769–8778 (2018)

    Google Scholar 

  17. Huang, C., Li, Y., Loy, C.C., Tang, X.: Learning deep representation for imbalanced classification. In: IEEE Conference on Computer Vision and Pattern Recognition, pp. 5375–5384 (2016)

    Google Scholar 

  18. Isola, P., Zhu, J.Y., Zhou, T., Efros, A.A.: Image-to-image translation with conditional adversarial networks. In: IEEE Conference on Computer Vision and Pattern Recognition, pp. 1125–1134 (2017)

    Google Scholar 

  19. Japkowicz, N., Stephen, S.: The class imbalance problem: a systematic study. Intell. Data Anal. 6(5), 429–449 (2002)

    Article  Google Scholar 

  20. Kubat, M., Matwin, S.: Addressing the curse of imbalanced training sets: one-sided selection. In: International Conference on Machine Learning, vol. 97, pp. 179–186 (1997)

    Google Scholar 

  21. Lawrence, S., Burns, I., Back, A., Tsoi, A.C., Giles, C.L.: Neural network classification and prior class probabilities. In: Montavon, G., Orr, G.B., Müller, K.-R. (eds.) Neural Networks: Tricks of the Trade. LNCS, vol. 7700, pp. 295–309. Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-642-35289-8_19

    Chapter  Google Scholar 

  22. Lin, T.-Y., et al.: Microsoft COCO: common objects in context. In: Fleet, D., Pajdla, T., Schiele, B., Tuytelaars, T. (eds.) ECCV 2014. LNCS, vol. 8693, pp. 740–755. Springer, Cham (2014). https://doi.org/10.1007/978-3-319-10602-1_48

    Chapter  Google Scholar 

  23. Lin, T.Y., RoyChowdhury, A., Maji, S.: Bilinear CNN models for fine-grained visual recognition. In: IEEE International Conference on Computer Vision, pp. 1449–1457 (2015)

    Google Scholar 

  24. Liu, X.Y., Wu, J., Zhou, Z.H.: Exploratory undersampling for class-imbalance learning. Trans. Syst. Man Cybern. Part B (Cybern.) 39(2), 539–550 (2008)

    Google Scholar 

  25. Liu, Z., Luo, P., Qiu, S., Wang, X., Tang, X.: DeepFashion: powering robust clothes recognition and retrieval with rich annotations. In: IEEE Computer Vision and Pattern Recognition, pp. 1096–1104 (2016)

    Google Scholar 

  26. Liu, Z., Luo, P., Wang, X., Tang, X.: Deep learning face attributes in the wild. In: IEEE International Conference on Computer Vision (December 2015)

    Google Scholar 

  27. van der Maaten, L., Hinton, G.: Visualizing data using t-SNE. J. Mach. Learn. Res. 9, 2579–2605 (2008)

    MATH  Google Scholar 

  28. Arjovsky, M., Bottou, L.: Towards principled methods for training generative adversarial networks. In: International Conference on Learning Representations (2017)

    Google Scholar 

  29. van Miltenburg, E.: Stereotyping and bias in the Flickr30K dataset. In: Workshop on Multimodal Corpora: Computer Vision and Language Processing (May 2016)

    Google Scholar 

  30. Mullick, S.S., Datta, S., Das, S.: Generative adversarial minority oversampling. In: IEEE International Conference on Computer Vision (October 2019)

    Google Scholar 

  31. Petsiuk, V., Das, A., Saenko, K.: Rise: randomized input sampling for explanation of black-box models. In: British Machine Vision Conference (September 2018)

    Google Scholar 

  32. Ponce, J., et al.: Dataset issues in object recognition. In: Ponce, J., Hebert, M., Schmid, C., Zisserman, A. (eds.) Toward Category-Level Object Recognition. LNCS, vol. 4170, pp. 29–48. Springer, Heidelberg (2006). https://doi.org/10.1007/11957959_2

    Chapter  Google Scholar 

  33. Ratner, A.J., Ehrenberg, H., Hussain, Z., Dunnmon, J., Ré, C.: Learning to compose domain-specific transformations for data augmentation. In: Advances in Neural Information Processing Systems, pp. 3236–3246 (2017)

    Google Scholar 

  34. Richard, M.D., Lippmann, R.P.: Neural network classifiers estimate Bayesian a posteriori probabilities. Neural Comput. 3(4), 461–483 (1991)

    Article  Google Scholar 

  35. Salimans, T., Goodfellow, I., Zaremba, W., Cheung, V., Radford, A., Chen, X.: Improved techniques for training GANs. In: Neural Information Processing Systems, pp. 2234–2242 (2016)

    Google Scholar 

  36. Santurkar, S., Schmidt, L., Madry, A.: A classification-based study of covariate shift in GAN distributions. In: International Conference on Machine Learning, pp. 4487–4496 (2018)

    Google Scholar 

  37. Selvaraju, R.R., Cogswell, M., Das, A., Vedantam, R., Parikh, D., Batra, D.: Grad-CAM: visual explanations from deep networks via gradient-based localization. In: IEEE International Conference on Computer Vision (October 2017)

    Google Scholar 

  38. Shen, L., Lin, Z., Huang, Q.: Relay backpropagation for effective learning of deep convolutional neural networks. In: Leibe, B., Matas, J., Sebe, N., Welling, M. (eds.) ECCV 2016. LNCS, vol. 9911, pp. 467–482. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-46478-7_29

    Chapter  Google Scholar 

  39. Szegedy, C., Vanhoucke, V., Ioffe, S., Shlens, J., Wojna, Z.: Rethinking the inception architecture for computer vision. In: IEEE Conference on Computer Vision and Pattern Recognition, pp. 2818–2826 (2016)

    Google Scholar 

  40. Taigman, Y., Polyak, A., Wolf, L.: Unsupervised cross-domain image generation. In: International Conference on Learning Representations (2017)

    Google Scholar 

  41. Tomek, I.: Two modifications of CNN. IEEE Trans. Syst. Man Cybern. SMC–6(11), 769–772 (1976)

    MathSciNet  MATH  Google Scholar 

  42. Torralba, A., Efros, A.A.: Unbiased look at dataset bias. In: IEEE CVPR, pp. 1521–1528 (June 2011)

    Google Scholar 

  43. Wah, C., Branson, S., Welinder, P., Perona, P., Belongie, S.: The Caltech-UCSD Birds-200-2011 Dataset. Technical report, CNS-TR-2011-001, California Institute of Technology (2011)

    Google Scholar 

  44. Wang, K.J., Makond, B., Chen, K.H., Wang, K.M.: A hybrid classifier combining SMOTE with PSO to estimate 5-year survivability of breast cancer patients. Appl. Soft Comput. 20, 15–24 (2014)

    Article  Google Scholar 

  45. Weiss, G.M., Provost, F.: The Effect of Class Distribution on Classifier Learning: An Empirical Study. Technical report, Technical Report ML-TR-43, Department of Computer Science, Rutgers University (2001)

    Google Scholar 

  46. Xiao, J., Hays, J., Ehinger, K.A., Oliva, A., Torralba, A.: SUN database: large-scale scene recognition from Abbey to Zoo. In: IEEE Computer Vision and Pattern Recognition, pp. 3485–3492 (2010)

    Google Scholar 

  47. Zhang, L., Huang, S., Liu, W., Tao, D.: Learning a mixture of granularity-specific experts for fine-grained categorization. In: IEEE International Conference on Computer Vision, pp. 8331–8340 (2019)

    Google Scholar 

  48. Zhou, B., Lapedriza, A., Xiao, J., Torralba, A., Oliva, A.: Learning deep features for scene recognition using places database. In: Neural Information Processing Systems, pp. 487–495 (2014)

    Google Scholar 

  49. Zhou, Z.H., Liu, X.Y.: Training cost-sensitive neural networks with methods addressing the class imbalance problem. IEEE Trans. Knowl. Data Eng. 1, 63–77 (2006)

    Article  Google Scholar 

  50. Zhu, J.Y., Park, T., Isola, P., Efros, A.A.: Unpaired image-to-image translation using cycle-consistent adversarial networks. In: IEEE International Conference on Computer Vision, pp. 2223–2232 (2017)

    Google Scholar 

Download references

Acknowledgements

This work was partially supported by the IIT Kharagpur ISIRD program and the SERB Grant SRG/2019/001205.

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

1 Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (pdf 9705 KB)

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Sahoo, A., Singh, A., Panda, R., Feris, R., Das, A. (2020). Mitigating Dataset Imbalance via Joint Generation and Classification. In: Bartoli, A., Fusiello, A. (eds) Computer Vision – ECCV 2020 Workshops. ECCV 2020. Lecture Notes in Computer Science(), vol 12540. Springer, Cham. https://doi.org/10.1007/978-3-030-65414-6_14

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-65414-6_14

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-65413-9

  • Online ISBN: 978-3-030-65414-6

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics