Skip to main content

Characteristics and Perspectives of Disease at the Wildlife-Livestock Interface in North America

  • Chapter
  • First Online:
Diseases at the Wildlife - Livestock Interface

Part of the book series: Wildlife Research Monographs ((WIREMO,volume 3))

Abstract

North America encompasses vast and diverse ecological regions that support a large array of species of native wildlife. Over the past 500 years livestock agriculture has become well established across the continent wherever practical and profitable, this has led to a high degree of overlap and interaction between wildlife and livestock. The interface created has led to two-way pathogen transmission, from livestock to wildlife and vice versa. The larger challenge than managing any disease in livestock, then, is controlling it in free-ranging wildlife. Farm typologies in North America vary from small subsistence producers with little biosecurity to immense, industrialized operations that employ high levels of biosecurity. Of course, with all the feed and waste associated with these large operations, many species of wildlife are continually attracted to them and challenging strategies put in place to limit pathogen transmission. North America is home to many long endemic (e.g., bovine tuberculosis, brucellosis, rabies, pneumonia) and emerging or re-emerging (e.g., chronic wasting disease [CWD], West Nile virus, variants of highly pathogenic avian influenza) diseases. The continent is also at constant risk of infiltration of foreign diseases such as foot and mouth disease and African and classical swine fever. In this chapter, we detail the history and current state of disease prevention and mitigation at the wildlife-livestock interface in North America. Emphasis is given on how cooperation within and among Canada, Mexico, and the United States is leading to improvements in surveillance, the conduct of priority research, and the optimization of management as guided by adaptive, scientific principles.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Aarestrup FM (2006) Antimicrobial resistance in bacteria of animal origin

    Google Scholar 

  • Allen D (1954) Our wildlife legacy. Funk and Wagnalls, New York

    Google Scholar 

  • APHIS Veterinary Services (2007) Procedure manual for classical swine fever (CSF) surveillance

    Google Scholar 

  • Arnold R, De Sa J, Gronniger T, Percy A, Somers J (2006) A potential influenza pandemic: possible macroeconomic effects and policy issues. The congress of the United States, congressional budget Office, p 44

    Google Scholar 

  • Atwood TC, Deliberto TJ, Smith HJ, Stevenson JS, Vercauteren KC (2008) Spatial ecology of raccoons related to cattle and bovine tuberculosis in northeastern Michigan. J of Wildl Manage 73(5):647–654

    Article  Google Scholar 

  • Berentsen AR, Patrick EM, Blass C, Wehner K, Dunlap B, Hicks B, Hale R, Chipman RB, VerCauteren KC (2018) Seroconversion of raccoons following two oral rabies vaccination baiting strategies. J Wildl Manag 82(1):226–231. https://doi.org/10.1002/jwmg.21368

    Article  Google Scholar 

  • Besser TE, Highland MA, Baker K, Cassirer EF, Anderson NJ, Ramsey JM, Mansfield K, Bruning DL, Wolff P, Smith JB, Jenks JA (2012) Causes of pneumonia epizootics among bighorn sheep, western United States, 2008–2010. Emerg Infect Dis 18(3):406

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bodenchuk MJ, VerCauteren KC (2016) Management of feral swine. In: Proceedings of the vertebrate pest conference 27

    Google Scholar 

  • Bohmann K, Evans A, Gilbert MTP, Carvalho G, Creer S, Knapp M, Yu D, deBruyn M (2014) Environmental DNA for wildlife biology and biodiversity monitoring. Trends Ecol Evol 29:358–367. https://doi.org/10.1016/j.tree.2014.04.003

    Article  PubMed  Google Scholar 

  • Brown VR, Bevins SN (2018) A review of African swine fever and the potential for introduction into the United States and the possibility of subsequent establishment in feral swine and native ticks. Front Vet Sci 5:11. https://doi.org/10.3389/fvets.2018.00011

    Article  PubMed  PubMed Central  Google Scholar 

  • Capua I, Alexander DJ (2010) Avian influenza: recent developments. Avian Pathol 33(4):393–404. https://doi.org/10.1080/03079450410001724085

    Article  Google Scholar 

  • Carlson JC, Franklin AB, Hyatt DR, Pettit SE, Linz GM (2011) The role of starlings in the spread of Salmonella within concentrated animal feeding operations. J Appl Ecol 48(2):479–486

    Article  Google Scholar 

  • Carstensen M, DonCarlos MW (2011) Preventing the establishment of a wildlife disease reservoir: a case study of bovine tuberculosis in wild deer in Minnesota. USA Vet Med Int 2011:1. https://doi.org/10.4061/2011/413240

    Article  Google Scholar 

  • Cassirer EF, Sinclair ARE (2007) Dynamics of pneumonia in a bighorn sheep metapopulation. J Wildl Manag 71:1080–1088

    Article  Google Scholar 

  • Cassirer EF, Manlove KR, Almberg ES, Kamath PL, Cox M, Wolff P, Roug A, Shannon J, Robinson R, Harris RB, Gonzales BJ, Plowright RK, Hudson PJ, Cross PC, Dobson A, Besser TE (2017) Pneumonia in bighorn sheep: risk and resilience. J Wildl Manag 82(1):32–45. https://doi.org/10.1002/jwmg.21309

    Article  Google Scholar 

  • Cochrane W (1993) The development of American agriculture: a historical analysis. University of Minnesota, Minnesota

    Google Scholar 

  • Conner MM, Ebinger MR, Blanchong JA, Cross PC (2008) Infectious disease in cervids of North America. Annals New York Acad Sci 1134(1):146–172

    Article  Google Scholar 

  • Corn J, Cumbee JC, Barfoot R, Erickson GE (2009) Pathogen exposure in feral swine populations geographically associated with high densities of transitional swine premises and commercial swine production. J Wildl Dis 45(3):713–721

    Article  PubMed  Google Scholar 

  • Crosby W (1972) The Columbian exchange: biological and cultural consequences of 1492. Greenwood Press, Westport, CT

    Google Scholar 

  • Cross ML, Buddle BM, Aldwell FE (2007) The potential of oral vaccines for disease control in wildlife species. Vet J 174(3):472–480

    Google Scholar 

  • Davis DS, Elzer PH (2002) Brucella vaccines in wildlife. Vet Microbiol 90(1–4):533–544. https://doi.org/10.1016/S0378-1135(02)00233-X

    Article  CAS  PubMed  Google Scholar 

  • Decker DJ, Evensen DTN, Siemer WF, Leong KM, Riley SJ, Wild MA, Castle KT, Higgins CL (2010) Understanding risk perceptions to enhance communication about human-wildlife interactions and the impacts of zoonotic disease. J Inst Lab Anim Res 51:255–261

    Google Scholar 

  • Delahay RJ, Smith GC, Hutchings MR (2009) The science of wildlife disease management. In: Delahay RJ, Smith GC, Hutchings MR (eds) Management of disease in wild mammals. Springer, Tokyo, pp 1–8

    Chapter  Google Scholar 

  • Drolet BS, Reister LM, Rigg TD, Nol P, Podell BK, Mecham JO, VerCauteren KC, van Rijn PA, Wilson WC, Bowen RA (2013) Experimental infection of white-tailed deer (Odocoileus virginianus) with northern European bluetongue virus serotype 8. Vet Microbiol 166(3–4):347–355

    Article  CAS  PubMed  Google Scholar 

  • Essey MA, Stallknecht DE, Himes EM, Harris SK (1983) Follow-up survey of feral swine for Mycobacterium Bovis infection on the Hawaiian Island of Molokai. In: Proceedings of the 87th annual meeting of the United States Animal Health Association, Las Vegas, Nevada

    Google Scholar 

  • Foreyt W, Jessup D (1982) Fatal pneumonia of bighorn sheep following association with domestic sheep. J Wildl Dis 18(2):163–168

    Article  CAS  PubMed  Google Scholar 

  • Franklin A, VerCauteren K (2016) Keeping wildlife out of your food: mitigation and control strategies to reduce the transmission risk of food-borne pathogens. In: Jay-Russell M, Doyle M (eds) Food safety risks from wildlife. Springer International Publishing

    Google Scholar 

  • Gamble HR, Brady RC, Bulaga LL, Berthoudc CL, Smith WG, Detweiler LA, Miller LE, Lautnere EA (1999) Prevalence and risk association for Trichinella infection in domestic pigs in the northeastern United States. Vet Parasitology 82(1):59–69

    Article  CAS  Google Scholar 

  • Gorsich EE, McKee CD, Grear DA, Miller RS, Portacci K, Lindström T, Webb CT (2018) Model-guided suggestions for targeted surveillance based on cattle shipments in the US. Prev Vet Med 150:52–59

    Article  PubMed  Google Scholar 

  • Gras N (1925) A history of agriculture in Europe and America. FS Crofts and Co., New York

    Google Scholar 

  • Greene JL (2015) Update on the highly-pathogenic avian influenza outbreak of 2014–2015. CRS Report #R44114. https://www.fas.org/sgp/crs/misc/R44114.pdf. Accessed 2 April 2018

  • Hamir AN, Kunkle RA, Cutlip RC, Miller JM, O’Rourke KI, Williams ES, Miller MW, Stack MJ, Chaplin MJ, Richt JA (2005) Experimental transmission of chronic wasting disease agent from mule deer to cattle by the intracerebral route. J Vet Diagn Investig 17(3):276–281

    Article  Google Scholar 

  • Hartley M, Gill E (2010) Assessment and mitigation processes for disease risks associated with wildlife management and conservation interventions. Vet Rec 166(16):487–490

    Google Scholar 

  • Heffelfinger J (2011) Taxonomy, evolutionary history, and distribution. In: Hewitt D (ed) Biology and management of white-tailed deer. CRC Press, Boca Raton, FL, pp 3–42

    Google Scholar 

  • Hill AE, Green AL, Wagner BA, Dargatz DA (2009) Relationship between herd size and annual prevalence of and primary antimicrobial treatments for common diseases on dairy operations in the United States. Prev Vet Med 88(4):264–277

    Article  PubMed  Google Scholar 

  • Hill NJ, Takekawa JY, Cardona CJ, Meixell BW, Ackerman JT, Runstadler JA, Boyce WM (2012) Cross-seasonal patterns of avian influenza virus in breeding and wintering migratory birds: a flyway perspective. Vector-Borne and Zoonotic Diseases 12(3):243–253

    Article  PubMed  PubMed Central  Google Scholar 

  • Hoe FGH, Ruegg PL (2006) Opinions and practices of Wisconsin dairy producers about biosecurity and animal Well-being. J Dairy Sci 89(6):2297–2308

    Article  CAS  PubMed  Google Scholar 

  • Hoppe R, MacDonald JM (2016) Understanding America’s diverse family farms. US Department of Agriculture, Economic Research Services, Amber Waves. Retrieved from https://www.ers.usda.gov/amberwaves/2016/januaryfebruary/understanding-americ-s-diverse-family-farms/

  • Horan RD, Wolf CA (2005) The economics of managing infectious wildlife disease. Am J Agric Econ 87:537–551

    Google Scholar 

  • Landers TF, Cohen B, Wittum TE, Larson EL (2012) A review of antibiotic use in food animals: perspective, policy, and potential. Public Health Rep 127(1):4–22

    Article  PubMed  PubMed Central  Google Scholar 

  • Lavelle M, Snow N, Halseth J, Kinsey J, Foster J, VerCauteren K (2018) Development and evaluation of a bait station for selectively dispensing bait to invasive wild pigs. Wildl Soc Bull 42(1):102–110. https://doi.org/10.1002/wsb.856

    Article  Google Scholar 

  • Leighton FA, Wobeser GA, Barker IK, Daoust PY, Martineau D (1997) The Canadian Cooperative Wildlife Health Centre and surveillance of wild animal diseases in Canada. Revue vÕtÕrinaire canadienne 38:279–284

    Google Scholar 

  • Li H, Karney G, O’Toole D, Crawford TB (2008) Long distance spread of malignant catarrhal fever virus from feedlot lambs to ranch bison. Can Vet J 49(2):183

    PubMed  PubMed Central  Google Scholar 

  • Lindström T, Grear DA, Buhnerkempe M, Webb CT, Miller RS, Portacci K, Wennergren U (2013) A Bayesian approach for modeling cattle movements in the United States: scaling up a partially observed network. PLoS One 8(1):e53432

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Lysons R, Gibbens J, Smith L (2007) Progress with enhancing veterinary surveillance in the United Kingdom. Vet Rec 160:105–112

    Google Scholar 

  • Madsen JM, Zimmermann NG, Timmons J, Tablante NL (2013) Avian influenza seroprevalence and biosecurity risk factors in Maryland backyard poultry: a cross-sectional study. PLoS One 8(2):e56851

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Maichak EJ, Scurlock BM, Rogerson JD, Meadows LL, Barbknecht AE, Edwards WH, Cross PC (2009) Effects of management, behavior, and scavenging on risk of brucellosis transmission in elk of western Wyoming. J Wildl Dis 45(2):398–410

    Google Scholar 

  • Manlove KR, Walker JG, Craft ME, Huyvaert KP, Joseph MB, Miller RS, Cross PC (2016) “One Health” or three? Publication silos among the One Health disciplines. PLoS Biol 14:1–14

    Google Scholar 

  • McEwen SA, Fedorka-Cray PJ (2002) Antimicrobial use and resistance in animals. Clin Infect Dis 34(Suppl 3):S93–S106

    Article  CAS  PubMed  Google Scholar 

  • McQuiston JH, Garber LP, Porter-Spalding BA, Hahn JW, Pierson FW, Wainwright SH, Senne DA, Brignole TJ, Akey BL, Holt TJ (2005) Evaluation of risk factors for the spread of low pathogenicity H7N2 avian influenza virus among commercial poultry farms. J Amer Vet Med Assoc 226(5):767–772

    Article  Google Scholar 

  • McShea WJ, Underwood HB, Rappole JH (eds) (1997) The science of overabundance: deer ecology and population management. Smithsonian Institution, Washington DC

    Google Scholar 

  • Meltzer MI, Cox NJ, Fukuda K (1999) The economic impact of pandemic influenza in the United States: priorities for intervention. Emerg Infect Dis 5:659–671

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Miller RS, Sweeney SJ (2013) Mycobacterium bovis (bovine tuberculosis) infection in north American wildlife: current status and opportunities for mitigation of risks of further infection in wildlife populations. Epidemiol Infect 141(7):1357–1370. https://doi.org/10.1017/S0950268813000976

    Article  CAS  PubMed  Google Scholar 

  • Miller RS, Farnsworth ML, Malmberg JL (2013) Diseases at the livestock–wildlife interface: status, challenges, and opportunities in the United States. Prev Vet Med 110(2):119–132. https://doi.org/10.1016/j.prevetmed.2012.11.021

    Article  PubMed  Google Scholar 

  • Miller RS, Sweeney SJ, Akkina JE, Saito EK (2015) Potential intercontinental movement of influenza A(H7N9) virus into North America by wild birds: application of a rapid assessment framework. Transbound Emerg Dis 62(6):650–668. https://doi.org/10.1111/tbed.12213

    Article  CAS  PubMed  Google Scholar 

  • Miller RS, Sweeney SJ, Slootmaker C, Grear DA, Salvo PA, Kiser D, Shwiff SA (2017) Cross-species transmission potential between wild pigs, livestock, poultry, wildlife, and humans: implications for disease risk management in North America. Nature. Sci Rep 7(7821). https://doi.org/10.1038/s41598-017-07336-z

  • Moore SJ, West Greenlee MH, Kondru N, Manne S, Smith JD, Kunkle RA, Kanthasamy A, Greenlee JJ (2017) Experimental transmission of the chronic wasting disease agent to swine after oral or intracranial inoculation. J Virol 91(19):e00926-17. https://doi.org/10.1128/JVI.00926-17

    Article  PubMed  PubMed Central  Google Scholar 

  • Mörner T, Obendorf D, Artois M, Woodford MH (2002) Surveillance and monitoring of wildlife diseases. Revue scientifique et technique 21(1):67–76

    Google Scholar 

  • O’brien DJ, Schmitt SM, Fitzgerald SD, Berry DE, Hickling GJ (2006) Managing the wildlife reservoir of Mycobacterium bovis: the Michigan, USA, experience. Vet Microbiol 112:313–323

    Google Scholar 

  • O’Brien DJ, Schmitt SM, Fitzgerald SD, Berry DE (2011) Management of bovine tuberculosis in Michigan wildlife: current status and near term prospects. Vet Microbiol 151(1–2):179–187

    Article  PubMed  Google Scholar 

  • Olmstead AL, Rhode PW (2004) An impossible undertaking: the eradication of bovine tuberculosis in the United States. J Eco Hist 64(3):734–772. https://doi.org/10.1017/S0022050704002955

    Article  Google Scholar 

  • Olsen SC (2010) Brucellosis in the United States: role and significance of wildlife reservoirs. Vaccine 28(5):F73–F76

    Article  PubMed  Google Scholar 

  • Organ J, Geist V, Mahoney SP, Williams S, Krausman PR, Batcheller GR, Decker TA, Carmichael R, Nanjappa P, Regan R, Medellin RA, Cantu R, McCabe RE, Craven S, Vecellio GM, Decker DJ (2012) The North American model of wildlife conservation. The Wildlife Society Technical Review 12–04. Wildl Soc. Bethesda, Maryland

    Google Scholar 

  • Ostfeld RS, Holt RD (2004) Are predators good for your health? Evaluating evidence for top-down regulation of zoonotic disease reservoirs. Front Ecol Envir 2(1):13–20

    Google Scholar 

  • Pedersen K, Miller RS, Musante AR, White TS, Freye JD II, Gidlewski T (2018) Antibody evidence of porcine reproductive and respiratory syndrome virus detected in sera collected from feral swine (Sus scrofa) across the United States. J Swine Health Prod 26(1):41–44

    Google Scholar 

  • Pepin KM, VerCauteren KC (2016) Disease-emergence dynamics and control in a socially-structured wildlife species. Nature: Sci Rep 6:25150. https://doi.org/10.1038/srep25150

    Article  CAS  PubMed Central  Google Scholar 

  • Pillai SD, Widmer KW, Ivey LJ, Coker KC, Newman E, Lingsweiler S, Baca D, Kelley M, Davis DS, Silvy NJ, Adams LG (2000) Failure to identify non-bovine reservoirs of Mycobacterium bovis in a region with a history of infected dairy-cattle herds. Prev Vet Med 43(1):53–62

    Article  CAS  PubMed  Google Scholar 

  • Saif Y, Barnes H (2008) Diseases of poultry. Blackwell, Ames, IA, pp 452–514

    Google Scholar 

  • Sainsbury AW, Kirkwood JK, Bennett PM (2001) Status of wildlife health monitoring in the United Kingdom. Vet Rec 148:558–563

    Google Scholar 

  • Shields DA, Mathews KH (2003) Interstate livestock movements. USDA ERS outlook report LDP-M-108-01. Available: http://www.ers.usda.gov/media/312234/ldpm10801_1_pdf

  • Smith P (1968) Bovine-type tuberculosis infection in feral swine. University of California, Davis

    Google Scholar 

  • Smyser TJ, Redding JV, Bevis CM, Page LK, Swihart RK (2015) Development of an automated dispenser for the delivery of medicinal or vaccine-laden baits to raccoons (Procyon lotor). J Widl Dis 51(2):513–518. https://doi.org/10.7589/2014-08-211

    Article  Google Scholar 

  • Spear DP (1982) California besieged: the foot-and-mouth epidemic of 1924. Agric Hist 56(3):528–541

    CAS  PubMed  Google Scholar 

  • Srisa-Art M, Boehle K, Geiss B, Henry C (2018) Highly sensitive detection of salmonella typhimurium using a colorimetric paper-based analytical device coupled with immunomagnetic separation. Anal Chem 90:1035–1043

    Article  CAS  PubMed  Google Scholar 

  • Stahl RS, Ellis CK, Nol P, Waters WR, Palmer M, VerCauteren K (2015) Fecal volatile organic compound profiles from white-tailed deer (Odocoileus virginianus) as indicators of Mycobacterium bovis exposure or Mycobacterium bovis Bacille Calmette-Guerin (BCG) vaccination. PLoS One 10(6):e0129740. https://doi.org/10.1371/journal.pone.0129740

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Steele JH, Fernandez PJ (1991) History of rabies and global aspects. In: Baer GM (ed) The natural history of rabies, 2nd edn. CRC Press, Boca Raton, Florida, pp 1–26

    Google Scholar 

  • Stein BA, Kutner LS, Adams JS (2000) Precious heritage: the status of biodiversity in the United States. The Nature Conservancy, New York

    Book  Google Scholar 

  • Stitt T, Mountifield J, Stephen C (2007) Opportunities and obstacles to collecting wildlife disease data for public health purposes: results of a pilot study on Vancouver Island, British Columbia. Can Vet J 48:83–90

    Google Scholar 

  • Thirgood S (2009) New perspectives on managing wildlife disease. J Appl Ecol 46(2):454–456

    Google Scholar 

  • Turner F (1920) The frontier in American history. Digireads.com Publishing

  • U.S. Fish and Wildlife Service (2017) Waterfowl population status, 2017. U.S. Department pf the Interior, Washington D.C. USA. http://www.fws.gov/birds/surveys–and–data/reports–and–publications/population–status.php

  • US Department of Commerce, Bureau of economic analysis. Interactive data application. Accessed 26 September 2017

    Google Scholar 

  • USDA Animal Plant Health Inspection Service (2008) Swine 2006 part III: reference of swine health, productivity, and general management in the United States, 2006. http://www.aphis.usda.gov/animal_health/nahms/swine/downloads/swine2006/Swine2006_dr_PartIII.pdf

  • USDA Economic Research Service (2018) Livestock and meat international trade data. https://www.ers.usda.gov/data-products/livestock-and-meat-international-trade-data/. Accessed 1 March 2018

  • VerCauteren KC (2003) The deer boom: discussions on population growth and range expansion of the white-tailed deer. In: Hisey G, Hisey K (eds) Bowhunting records of north American White-tailed deer, 2nd edn. The Pope and Young Club, Chatfield, Minnesota, pp 15–20

    Google Scholar 

  • VerCauteren KC, Lavelle MJ, Hygnstrom S (2006) Fences and deer-damage management: a review of designs and efficacy. Wildl Soc Bull 34(1):191–200

    Article  Google Scholar 

  • Vercauteren K, Lavelle M, Phillips G (2008) Livestock protection dogs for deterring deer from cattle and feed. J Wildl Man 72

    Google Scholar 

  • VerCauteren KC, Anderson CW, van Deelen TR, Drake D, Walter WD, Vantassel SM, Hygnstrom SE (2011) Regulated commercial harvest to manage overabundant white-tailed deer: an idea to consider? Wildl Soc Bull 35(3):185–194

    Article  Google Scholar 

  • VerCauteren K, Deliberto T, Shwiff T, Ellis C, Chipman R, Slate D (2012) Rabies in North America: need and call for a one health approach. In: Frey N (ed) Proceedings of the fourteenth wildlife damage management conference. Nebraska City, Neberaska, pp 56–63

    Google Scholar 

  • Walter WD, Anderson CW, Smith R, Vanderklok M, Averill JJ, VerCauteren KC (2012) On-farm mitigation of transmission of tuberculosis from white-tailed deer to cattle: literature review and recommendations. Vet Med Int 2012:1. https://doi.org/10.1155/2012/616318

    Article  Google Scholar 

  • Wang H, Teel PD, Grant WE, Schuster G, Pérez de León AA (2016) Simulated interactions of white-tailed deer (Odocoileus virginianus), climate variation and habitat heterogeneity on southern cattle tick (Rhipicephalus (Boophilus) microplus) eradication methods in South Texas, USA. Ecol Model 342:82–96

    Article  Google Scholar 

  • Wasserberg G, Osnas EE, Rolley RE, Samuel MD (2009) Host culling as an adaptive management tool for chronic wasting disease in white-tailed deer: a modelling study. J Appl Ecol 46:457–466

    Google Scholar 

  • Wehausen JD, Kelley ST, Ramey RR (2011) Domestic sheep, bighorn sheep, and respiratory disease: a review of the experimental evidence. California Fish Game 97(1):7–24

    Google Scholar 

  • Wolfe LL, Conner MM, Bedwell CL, Lukacs PM, Miller MW (2010) Select tissue mineral concentrations and chronic wasting disease status in mule deer from north-central Colorado. J Wildl Dis 46(3):1029–1034

    Google Scholar 

  • Woolhouse MEJ, Dye C, Dobson A, Foufopoulos J (2001) Emerging infectious pathogens of wildlife. Philos Trans R Soc Lond B Biol Sci 356(1411):1001–1012

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kurt C. Vercauteren .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Vercauteren, K.C., Miller, R.S. (2021). Characteristics and Perspectives of Disease at the Wildlife-Livestock Interface in North America. In: Vicente, J., Vercauteren, K.C., Gortázar, C. (eds) Diseases at the Wildlife - Livestock Interface. Wildlife Research Monographs, vol 3. Springer, Cham. https://doi.org/10.1007/978-3-030-65365-1_8

Download citation

Publish with us

Policies and ethics