Skip to main content

Characteristics and Perspectives of Disease at the Wildlife-Livestock Interface in Oceania

  • Chapter
  • First Online:
Diseases at the Wildlife - Livestock Interface

Part of the book series: Wildlife Research Monographs ((WIREMO,volume 3))

  • 584 Accesses

Abstract

Oceania encompasses Australasia, New Zealand, Melanesia, Micronesia, and Polynesia. It spans the eastern and western hemispheres, is composed of more than 25,000 islands, has a land area of approximately 8.6 M square kilometers, and a human population of approximately 40 million. It is the smallest continent on earth, with the largest island on earth, and is surrounded by the Indian, Southern, and Pacific Oceans. Oceania features extensive geological, climatic, and ecosystem diversity that supports a large array of globally unique native species due to its existence as a multitude of islands (thousands) separated by bodies of water for millennia. Over the past 300–400 years, pigs, goats, sheep, and cattle have been deliberately introduced onto Oceania’s island ecosystems as a source of food for humans, initially as an insurance policy for marooned sea travelers. Livestock husbandry from these deliberate introductions has become well established across the continent, which has created an interface between native wildlife, domestic livestock, and feral livestock. These dynamics have led to bidirectional pathogen transmission, primarily through indirect contact via shared resources where pathogen-host-vector compatibility exists. Animal production across Oceania ranges from small subsistence producers throughout many of the smaller islands to vast, extensive enterprises in Australia and New Zealand. Across the range of production systems, biosecurity risks from uncontrolled direct and indirect wildlife-livestock interaction are ever present. On the larger islands where fodder production is established, intensive livestock production systems (dairy, pigs, poultry, aquaculture) are practiced that implement stringent and robust biosecurity measures to prevent disease transmission and production losses. Unsurprisingly, these production systems sometimes result in scenarios that attract wildlife species, thereby increasing the potential risk of pathogen transmission. Oceania’s long geographical separation and physiological differences between native wildlife and introduced domestic livestock has provided natural biosecurity advantages. Resultantly, many endemic (e.g., bovine tuberculosis, bovine brucellosis, rabies, pneumonia) and emerging/re-emerging (e.g., chronic wasting disease [CWD], West Nile virus, variants of highly pathogenic avian influenza) diseases on other continents are absent from the majority of Oceania. Despite these natural advantages to reduced risk of foreign disease incursions, such as foot and mouth disease and African swine fever, the potential for disease transmission events is rapidly increasing commensurate with increasing trade and human movements globally. This chapter details the history and current status of disease prevalence, eradication, and management at the wildlife-livestock interface across Oceania. Emphasis is given regarding how cooperation within and among Australia, New Zealand and island states/territories is leading to improvements in surveillance, efforts to eradicate diseases, and proving freedom from diseases.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  • Abbott KA (2002) Prevalence of Johne’s disease in rabbits and kangaroos. Technical report, University of Sydney December 2000. Meat and Livestock Australia limited, Australia

    Google Scholar 

  • Acevedo P, Escudero MA, Muñoz R, Gortazar C (2006) Factors affecting wild boar abundance across an environmental gradient in Spain. Acta Theriol 51:327–336

    Article  Google Scholar 

  • Acevedo P, Vincente J, Höfle U, Cassinello J, Ruiz-Fons F, Gortazar C (2007) Estimation of European wild boar relative abundance and aggregation: a novel method in epidemiological risk assessment. Epidemiol Infect 135:519–527

    Article  CAS  PubMed  Google Scholar 

  • Ahmad T, Khan M, Haroon, Musa TH, Nasir S, Hui J, Bonilla-Aldana DK, Rodriguez-Morals R (in press) Covid-19: zoonotic aspects. Travel Med Infect Dis

    Google Scholar 

  • Alexandratos N, Bruinsma J (2012) World agriculture towards 2030/2050: the 2012 revision. ESA working paper no. 12-03, FAO, Rome

    Google Scholar 

  • American Public Health Association (2018) Advancing a ‘one health’ approach to promote health at the human-animal-environment interface. Policy statement 201712

    Google Scholar 

  • Anderson A (2009) The rat and the octopus: initial human colonization and the prehistoric introduction of domestic animals to remote Oceania. Biol Invasions 11:1503–1519

    Article  Google Scholar 

  • Australian Bureau of Statistics (2001) Yearbook Australia. Number 83, ABS Catalogue No. 1301.0. Canberra, AU

    Google Scholar 

  • Barrau J, Devambez L (1957) Quelques résultats inattendus de l’acclimatation en Nouvelle-Calédonie. Terre et Vie 4:324–334

    Google Scholar 

  • Barré N (2003) Boophilus microplus resistance to deltamethrin in New Caledonia. International seminar in animal parasitology. World situation of parasite resistance in veterinary medicine. SENASICA-INIFAP-INFARVET-UADY-FAO-AMPAVE, Merida, Yucatan, Mexico, pp 11–16

    Google Scholar 

  • Barré N, Bianchi M, de Garine-Wichatitsky M (2002) Effect of the association of cattle and rusa deer (Cervus timorensis russa) on populations of cattle ticks (Boophilus microplus). Ann N Y Acad Sci 969:280–289

    Article  PubMed  Google Scholar 

  • Barro AS, Fegan M, Moloney B, Porter K, Muller J, Warner S, Blackburn JK (2016) Redefining the Australian Anthrax Belt: modeling the ecological niche and predicting the geographic distribution of Bacillus anthracis. PLoS Negl Trop Dis 10(6):e0004689

    Article  PubMed  PubMed Central  Google Scholar 

  • Bauer J, Giles J (2002) Recreational hunting – an international perspective. Wildlife Tourism Research Report Series: No. 13

    Google Scholar 

  • Beeson G (2020) A water story: learning from the past, planning for the future. CSIRO Publishing Clayton South VIC, AU

    Google Scholar 

  • Bengis RG, Kock RA, Fischer J (2002) Infectious animal diseases: the wildlife/livestock interface. Rev Sci Tec Off Int Epiz 21(1):53–65

    Article  CAS  Google Scholar 

  • Black PF, Murray JG, Nunn MJ (2008) Managing animal disease risk in Australia: the impact of climate change. Rev Sci Tec Off Int Epiz 27(2):563–580

    Article  CAS  Google Scholar 

  • Bonilla-Aldana DK, Dhama K, Rodriguez-Morals AJ (2020) Revisiting the one health approach in the context of COVID-19: a look into the ecology of this emerging disease. Adv Anim Vet Sci 8(3):234–237

    Article  Google Scholar 

  • Bourke RM, Harwood T (eds) (2009) Food and agriculture in Papau New Guinea. Australian National University E Press, Canberra, AU

    Google Scholar 

  • Bradshaw CJA (2012) Little left to lose: deforestation and forest degradation in Australia since European colonization. J Plant Ecol 5(1):109–120

    Article  Google Scholar 

  • Brioudes A (2016) Livestock disease surveillance and biosecurity priorities in the Pacific Island countries and territories. Dissertation, James Cook University, Queensland, AU

    Google Scholar 

  • Bulach D, Halpin R, Spiro D, Pomeroy L, Janies D, Boyle DB (2010) Molecular analysis of H7 avian influenza viruses from Australia and New Zealand: genetic diversity and relationships from 1976 to 2007. J Virol 84:9957–9966

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Caley P, Hickling GJ, Cowan PE, Pfeiffer DU (1999) Effects of sustained control of brushtail possums on levels of Mycobacterium bovis infection in cattle and brushtail possum populations from Hokotaka, New Zealand. N Z Vet J 47(4):133–142

    Article  CAS  PubMed  Google Scholar 

  • Chapman AD (2009) Numbers of living species in Australia and the world, 2nd edn. Australian Government, Department of the Environment, Water, Heritage, and the Arts, Canberra, AU

    Google Scholar 

  • Chevillon C, de Garine-Wichatitsky M, Barré N, Ducornez S, De Meeus T (2013) Understanding the genetic, demographical and/or ecological processes at play in invasions: lessons from the southern cattle tick Rhipicephalus microplus (Acari: Ixodidae). Exp Appl Acarol 59:203–218

    Article  PubMed  Google Scholar 

  • Coleman JD, Cooke MM (2001) Mycobacterium bovis infection in wildlife in New Zealand. Tuberculosis 81(3):191–202

    Article  CAS  PubMed  Google Scholar 

  • Cook BD, Fenner F (2002) Rabbit haemorrhagic disease and the biological control of wild rabbits, Oryctrolagus cuniculus, in Australia and New Zealand

    Google Scholar 

  • Corner LA (2006) The role of wild animal populations in the epidemiology of tuberculosis in domestic animals: how to assess the risk. Vet Microbiol 112:303–312

    Article  CAS  PubMed  Google Scholar 

  • Corner LA, Barrett RH, Lepper AWD, Lewis V, Pearson CW (1981) A survey of mycobacteriosis of feral pigs in the northern territory Aust. Vet J 57:537–542

    CAS  Google Scholar 

  • Cousins DV, Roberts JL (2001) Australia’s campaign to eradicate bovine tuberculosis: the battle for freedom and beyond. Tuberculosis 81(1/2):5–15

    Article  CAS  PubMed  Google Scholar 

  • Crump JA, Murdoch DR, Baker MG (2001) Emerging infectious diseases in an island ecosystem: the New Zealand perspective. Emerg Infect Dis 7(5):767–772

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Davys TR, Forsyth DM, Hickling GJ (1999) Recreational Himalayan thar (Hemitragus jemlahicus) hunters in Canterbury, New Zealand: a profile and management implications. N Z J Zool 26:1–9

    Article  Google Scholar 

  • de Garine-Wichatitsky M, Duncan P, Labbé A, Suprin B, Chardonnet P, Maillard D (2003) A review of the diet of rusa deer Cervus timorensis russa in New Caledonia: are the endemic plants defenceless against this introduced, eruptive ruminant? Pac Conserv Biol 9:136–143

    Article  Google Scholar 

  • de Garine-Wichatitsky M, Chardonnet P, de Garine I (2004) Management of introduced game species in New Caledonia : reconciling biodiversity conservation and resource use? Game Wildlife Sci 21:697–706

    Google Scholar 

  • de Garine-Wichatitsky M, Soubeyran Y, Maillard D, Duncan P (2005) The diets of introduced rusa deer (Cervus timorensis russa) in a native sclerophyll forest and a native rainforest of New Caledonia. N Z J Zool 32:117–126

    Article  Google Scholar 

  • de Garine-Wichatitsky M, de Meeûs T, Chevillon C, Berthier D, Barré N, Thévenon S, Maillard JC (2009) Population structure of wild and farmed rusa deer (Cervus timorensis russa) in new-Caledonia inferred from polymorphic microsatellite loci. Genetica 137:313–323

    Article  CAS  PubMed  Google Scholar 

  • De Meeûs T, Koffi BB, Barré N, de Garine-Wichatitsky M, Chevillon C (2010) Swift sympatric adaptation of a species of cattle tick to a new deer host in New Caledonia. Infect Genet Evol 10:976–983

    Article  PubMed  Google Scholar 

  • Decker DJ, Evensen DN, Siemer WF, Leong KM, Riley SJ, Wild MA, Castle KT, Higgins CL (2010) Understanding risk perceptions to enhance communications about human-wildlife interactions and the impacts of zoonotic disease. ILAR J 51(3):255–261

    Article  CAS  PubMed  Google Scholar 

  • Departement of Infrastructure, Transport, Regional Development and Communications (DITRDC) (2020) History of rail in Australia. Australian Government, Canberra, AU

    Google Scholar 

  • Department of Agriculture, Water and the Environment (DAWE) (2009) National farm biosecurity manual – poultry production. Australian Government, Canberra, AU

    Google Scholar 

  • Department of Agriculture, Water and the Environment (DAWE) (2019) Livestock movement summary. Australian Government, Canberra, AU

    Google Scholar 

  • Ducornez S, Barre N, Miller RJ, Garine-Wichatitsky M (2005) Diagnosis of amitraz resistance in Boophilus microplus in New Caledonia with the modified larval packet test. Vet Parasitol 130:285–292

    Article  CAS  PubMed  Google Scholar 

  • East IJ (2007) Adoption of biosecurity practices in the Australian poultry industries. Aust Vet J 85(3):107–112

    Article  CAS  PubMed  Google Scholar 

  • Eather J (2020) Beef and veal: march quarter (2020) Australian government, Department of Agriculture, Water and the Environment

    Google Scholar 

  • Edson D, Field H, McMichael L, Jordan D, Kung N, Mayer D, Smith C (2015) Flying-fox roost disturbance and Hendra virus spill-over risk. PLoS One 10(5):e0125881

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Edwards GP, Dobbie W, Berman DM (2002) Population trends in European rabbits and other wildlife of Central Australia in the wake of rabbit haemorrhagic disease. Wildl Res 29:557–565

    Article  Google Scholar 

  • Endo A, Nishiura H (2018) The role of migration in maintaining the transmission of avian influenza in waterfowl: a multisite multispecies transmission model along east Asian-Australian flyway. Can J Infect Dis Med Microbiol 3420535:1–7

    Article  Google Scholar 

  • Essey MA, Payne RL, Himes EM, Luchsinger D (1981) Bovine tuberculosis surveys of axis deer and feral swine on the Hawaiian island of Molokai. Proc U S Anim Health Assoc 85:538–549

    Google Scholar 

  • Essey MA, Stallknecht DE, Himes EM, Harris SK (1983) Follow-up survey of feral swine for Mycobacterium bovis infection on the Hawaiian island of Molokai. Proc Annu Meet US Anim Health Assoc 87:589–595

    Google Scholar 

  • Field H, de Jong C, Melvill D, Smith C, Smith I, Broos A, Kung YH, McLaughlin A, Zeddeman A (2011) Hendra virus infection dynamics in Australian fruit bats. PLoS One 6(12):e28678

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Firth C, Blasdell KR, Amos-Ritchie R, Sendow I, Agnihotri K, Boyle DB, Daniels P, Kirkland PD, Walker PJ (2017) Genomic analysis of bluetongue virus episystems in Australia and Indonesia. Vet Res 48:82

    Article  PubMed  PubMed Central  Google Scholar 

  • Flexner JL (2014) Historical archaeology, contact, and colonialism in Oceania. J Archaeol Res 22:43–87

    Article  Google Scholar 

  • Food and Agriculture Organization of the United Nations (FAO) (2019) Dairy market review. FAO, Rome

    Google Scholar 

  • Food and Agriculture Organization of the United Nations (FAO) (2020) ASF situation in Asia update. FAO, Rome

    Google Scholar 

  • Glass K, Barnes B, Scott A, Toribio JA, Moloney B, Singh M, Hernandez-Jover M (2019) Modelling the impact of biosecurity practices on the risk of high pathogenic avian influenza outbreaks in Australian commercial chicken farm. Prev Vet Med 165(1):8–14

    Article  CAS  PubMed  Google Scholar 

  • Gormley E, Corner LAL (2018) Wild animal tuberculosis: stakeholder value systems and management of disease. Front Vet Sci 5:327

    Article  PubMed  PubMed Central  Google Scholar 

  • Gortazar C, Cowan P (2013) Introduction to this issue: dealing with TB in wildlife. Epidemiol Infect 141(7):1339–1341

    Article  CAS  PubMed  Google Scholar 

  • Gortazar C, Vicente J, Gavier-Widen D (2003) Pathology of bovine tuberculosis in the European wild boar (Sus scrofa). Vet Rec 152:779–780

    Article  CAS  PubMed  Google Scholar 

  • Gortazar C, Ferroglio E, Hofle U, Frolich K, Vicente J (2007) Diseases shared between wildlife and livestock: a European perspective. Eur J Wildl Res 53(4):241–256

    Article  Google Scholar 

  • Gortazar C, Vicente J, Boadella M, Balesteros C, Galinto RC, Garrido J, Aranaz A, De la Fuente J (2011) Progress in the control of bovine tuberculosis in Spanish wildlife. Vet Microbiol 151:170–178

    Article  PubMed  Google Scholar 

  • Green W, Rohan M (2012) Opposition to aerial 1080 poisoning for control of invasive mammals in New Zealand risk perceptions and agency responses. J R Soc N Z 42(3):185–213

    Article  Google Scholar 

  • Grillo VL, Arzey KE, Hansbro PM, Hurt AC, Warner S, Bergfeld J, Burgess GW, Cookson B, Dickason CJ, Ferenczi M, Hollingsworth T, Hoque M, Jackson RB, Klaassen M, Kirkland PD, Kung NY, Lisovski S, O’Dea MA, O’Riley K, Roshier D, Skerratt LF, Tracey JP, Wang X, Woods R, Post L (2015) Avian influenza in Australia: a summary of 5 years of wild bird surveillance. Aust Vet J 93:387–393

    Article  CAS  PubMed  Google Scholar 

  • Guernier V, Goarant C, Benschop J, Lau CL (2018) A systematic review of human and animal leptospirosis in the Pacific Islands reveals pathogen and reservoir diversity. PLoS Negl Trop Dis 12(5):e0006203

    Article  Google Scholar 

  • Hall JS, Minnis RB, Campbell TA, Barras S, DeYoung RW, Pabilonia K, Avery ML, Sullivan H, Clark L, McLean RG (2008) Influenza exposure in United States feral swine populations. J Wildl Dis 44(2):263–368

    Article  Google Scholar 

  • Hlokwe TM, van Helden P, Michel AL (2014) Evidence of increasing intra and inter-species transmission of Mycobacterium bovis in South Africa: are we losing the battle. Prev Vet Med 115:10–17

    Article  CAS  PubMed  Google Scholar 

  • Hone J (1990) Predator prey theory and feral pig control, with emphasis on evaluation of shooting from a helicopter Aust. Wildl Res 17:123–130

    Article  Google Scholar 

  • Hone J, Donnelly CA (2008) Evaluating evidence of association of bovine tuberculosis in cattle and badgers. J Appl Ecol 45:1600–1666

    Article  Google Scholar 

  • Hoque MA, Burgess GW, Karo-Karo D, Cheam AL, Skerratt LF (2012) Monitoring of wild birds for Newcastle disease virus in North Queensland, Australia. Prev Vet Med 103:49–62

    Article  CAS  PubMed  Google Scholar 

  • Horwood PF, Tarantola A, Goarant C, Matsui M, Klement E, Umezaki M, Navarro S, Greenhill AR (2019) Health challenges of the Pacific Region: insights from history, geography, social determinants, genetics, and the microbiome. Front Immunol 10:2184

    Article  PubMed  PubMed Central  Google Scholar 

  • Jupiter S, Mangubhai S, Kingsford RT (2014) Conservation of biodiversity in the Pacific Islands of Oceania: challenges and opportunities. Pac Conserv Biol 20(2):206–220

    Article  Google Scholar 

  • Kepple G, Morrison C, Meyer J-Y, Boehmer HJ (2014) Isolated and vulnerable: the history and future of Pacific Island terrestrial biodiversity. Pac Conserv Biol 20(2):136–145

    Article  Google Scholar 

  • Keune H, Flandroy L, Thys S, De Regge N, Mori M, Antoine-Moussiaux N, Vanhove MP, Rebolledo J, Van Gucht S, Deloauwe I, Hiemstra W, Hasler B, Binot A, Savic S, Ruegg SR, Vries SD, Garnier J, van de Berg T (2017) The need for European OneHealth/EcoHealth networks. Arch Public Health 75:64

    Article  PubMed  PubMed Central  Google Scholar 

  • King CM (1990) The handbook of New Zealand mammals. Oxford University Press, Auckland

    Google Scholar 

  • King JS, Jenkins D, Ellis J, Fleming PJS, Windsor PA, Jan S (2011) Implications of wild dog ecology on the sylvatic and domestic life cycle of Neospora caninum in Australia. Vet J 188:24–33

    Article  PubMed  Google Scholar 

  • Kiple KF (2007) A moveable feast: ten millennia of food globalization. Cambridge University Press, Cambridge, UK

    Book  Google Scholar 

  • Knight C (2009) The paradox of discourse concerning deforestation in New Zealand: a historical survey. Environ History 15(3):323–342

    Article  Google Scholar 

  • Knowles GJE (1994) Use of the Judas pig methodology for controlling tuberculosis in feral pigs. MAF quality management contract report 73/90, prepared for the animal health board

    Google Scholar 

  • Koffi BB, De Meeus T, Barré N, Durand P, Arnathau C, Chevillon C (2006) Founder effects, inbreeding and effective sizes in the southern cattle tick: the effect of transmission dynamics and implications for pest management. Mol Ecol 15:4603–4611

    Article  CAS  PubMed  Google Scholar 

  • Krull CR, Galbraith JA, Glen AS, Nathan HW (2014) Invasive vertebrates in Australia and New Zealand. In: Stow A, Maclean N, Holwell GI (eds) Austral ark: the state of wildlife in Australia and New Zealand. Cambridge University Press, Cambridge and London, UK, pp 197–226

    Chapter  Google Scholar 

  • Lugton LW (1997) The contribution of wild mammals to the epidemiology of tuberculosis (Mycobacterium bovis) in New Zealand. PhD dissertation, Massey University, Palmerstown North, New Zealand. http://epicentre.massey.ac.nz/Portals/0/EpiCentre/Downloads/Publications/Thesis/IanLugt onPhD.pdf

  • Mackenzie JS (2005) Emerging zoonotic encephalitis viruses: lessons from Southeast Asia and Oceania. J Neurovirol 11(5):434–440

    Article  PubMed  PubMed Central  Google Scholar 

  • Mackenzie JF, Field HE (2004) Emerging encephalitogenic viruses: lyssaviruses and henipaviruses transmitted by frugiverous bats. Arch Virol Suppl 2004(18):97–111

    Google Scholar 

  • Mackenzie JS, Lindsay MDA, Smith DW, Imrie A (2017) The ecology and epidemiology of Ross River and Murray Valley encephalitis viruses in Western Australia: examples of one health in action. Trans R Soc Trop Med Hyg 111:248–254

    Article  PubMed  PubMed Central  Google Scholar 

  • Martín-Hernando M, Hofle U, Vicente J, Ruiz-Fons F, Vidal D, Barral M, Garrido JM, de la Fuente J, Gortazar C (2007) Lesions associated with Mycobacterium tuberculosis complex infection in the European wild boar. Tuberculosis 87:360–367

    Article  PubMed  Google Scholar 

  • Mason RJ, Fleming PJ (1999) Serological survey for Brucella antibodies in feral pigs from eastern Australia. Aust Vet J 77:331–332

    Article  CAS  PubMed  Google Scholar 

  • Matisoo-Smith E, Robins J (2008) Mitochondrial DNA evidence for the spread of rats through Oceania. Biol Invasions 11(7):1521–1527

    Article  Google Scholar 

  • Maurovic R (2007) Port Adelaide works to MEAB. In: The meat game: a history of the Gepps cross abiattors and livestock markets. Wakefield Press, Kent Town, pp 53–62

    Google Scholar 

  • Mayer JJ, Brisbin L (2008) Wild pigs in the United States: their history, comparative morphology, and current status. University of Georgia Press, Athens

    Google Scholar 

  • McInerney J, Small K, Caley P (1995) Prevalence of Mycobacterium bovis infection in feral pigs in the Northern Territory. Aust Vet J 72:448–451

    Article  CAS  PubMed  Google Scholar 

  • McNeely JA, Miller KR, Reid WV, Mittermeier RA, Werner TB (1990). Conserving the world’s biological diversity. IUCN, Gland, Switzerland; WRI, CI, WWF-US, World Bank, Washington, DC

    Google Scholar 

  • Meat and Livestock Australia (2019) 2019 state of the industry report – the Australian red meat and livestock industry. North Sydney, AU

    Google Scholar 

  • Merritt T, Taylor K, Cox-Witton K, Field H, Wingett K, Mendez D, Power M, Durrheim D (2018) Australian bat lyssavirus. Aust J Gen Pract 47:93–96

    Article  PubMed  Google Scholar 

  • Middleton D (2014) Hendra virus. Vet Clin North Am Equine Pract 30:579–589

    Article  PubMed  PubMed Central  Google Scholar 

  • Mittermeier RA, Werner TB, Lees A (1996) New Caledonia – a conservation imperative for an ancient land. Oryx 30:104–112

    Article  Google Scholar 

  • Mittermeier RA, Gil PR, Hoffmann M, Pilgrim J, Brooks T, Mittermeier CG, Lamoreux J, Da Fonseca GB (2004) Hotspots revisited: Earth’s biologically richest and most endangered terrestrial ecoregions. Cemex, Mexico City, Mexico

    Google Scholar 

  • More SJ, Radunz B, Glanville RJ (2015) Lessons learned during the successful eradication of bovine tuberculosis from Australia. Vet Rec 177(9):224–232

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Morris RS, Pfeiffer DU (1995) Directions and issues in bovine tuberculosis epidemiology and control in New Zealand. N Z Vet J 43(7):256–265

    Article  CAS  PubMed  Google Scholar 

  • Naranjo V, Gortazar C, Vicente J, de la Fuente J (2008) Evidence of the role of European wild boar as a reservoir of Mycobacterium tuberculosis complex. Vet Microbiol 127:1–9

    Article  PubMed  Google Scholar 

  • Nugent G, Fraser KW, Asher GW, Tustin KG (2001) Advances in New Zealand mammalogy 1990–2000: Deer. J R Soc N Z 31:263–298

    Article  Google Scholar 

  • Nugent G, Whitford J, Young N (2002) Use of released pigs as sentinels for Mycobacterium bovis. J Wildl Dis 38:665–677

    Article  PubMed  Google Scholar 

  • Nugent G, Warburton B, Thomson C, Sweetapple P, Ruscoe WA (2011) Effect of prefeeding, sowing rate and sowing pattern on efficacy of aerial 1080 poisoning of small-mammal pests in New Zealand. Wildl Res 38(3):249–259

    Article  Google Scholar 

  • Nugent G, Gortazar C, Knowles G (2015) The epidemiology of Mycobacterium bovis in wild deer and feral pigs and their roles in the establishment and spread of bovine tuberculosis in New Zealand wildlife. N Z Vet J 25:54–67

    Article  Google Scholar 

  • Nugent G, Gormley AM, Anderson DP, Crews K (2018) Roll-Back eradication of bovine tuberculosis (TB) from wildlife in New Zealand: concepts, evolving approaches, and Progress. Front Vet Sci 5:277

    Google Scholar 

  • O’Neil BD, Pharo HJ (1995) The control of bovine tuberculosis in New Zealand. N Z Vet J 43:249–255

    Article  PubMed  Google Scholar 

  • OIE (2018) OIE situational report for avian influenza. World Organisation for Animal Health, 12

    Google Scholar 

  • Oliver D (1989) Oceania: the native cultures of Australia and the Pacific islands. University of Hawaii Press, Honolulu, Hawaii

    Book  Google Scholar 

  • Paddle R (2000) The last Tasmanian tiger: the history and extinction of the Thylacine. Cambridge University Press, Cambridge, UK

    Google Scholar 

  • Palmer MV, Thacker TC, Waters WR, Gortazar C, Corner LL (2012) Mycobacterium bovis: a model pathogen at the interface of livestock, wildlife, and humans. Vet Med Int 2012:236205

    Article  PubMed  PubMed Central  Google Scholar 

  • Pascal M, Barré N, de Garine-Wichatitsky M, Lorvelec O, Frétey T, Brescia F, Jourdan H (2006) Les peuplements néo-calédoniens de vertébrés: invasions, disparitions. In: Beauvais M-L, Coléno A, Jourdan H (eds) Les espèces envahissantes dans l’archipel néo-calédonien. IRD Editions, Paris, pp 111–162

    Chapter  Google Scholar 

  • Pascal M, Lorvelec O, Barré N, de Garine-Wichatitsky M (2008) Espèces allochtones d’Esperitu Santo. Premiers résultats de l’expédition Santo 2006. Journal de la Société des Océanistes 126–127:187–193

    Article  Google Scholar 

  • Plowright RK, Becker DJ, Crowley DE, Washburne AD, Huang T, Nameer PO, Gurley ES, Han BA (2019) Prioritizing surveillance of Nipah virus in India. PLoS One 13(6):e0007393

    Google Scholar 

  • Pople AR (2004) Population monitoring for kangaroo management. Aust Mammal 26:37–44

    Article  Google Scholar 

  • Productivity Commission (2002) Impact of a foot and mouth disease outbreak on Australia. Research Repot, Commonwealth of Australia, Canberra, AU

    Google Scholar 

  • Prowse SJ, Perkins N, Field H (2009) Strategies for enhancing Australia’s capacity to respond to emerging infectious diseases. Vet Ital 45(1):67–78

    PubMed  Google Scholar 

  • Queensland Government (2018) Reducing the risk of Hendra virus infection. Brisbane, AU

    Google Scholar 

  • Radunz B (2006) Surveillance and risk management during the latter stages of eradication: experiences from Australia. Vet Microbiol 112(2006):283–290

    Article  PubMed  Google Scholar 

  • Reside AE, Beher J, Cosgrove AJ, Evans MC, Seabrook L, Silcock JL, Wenger AS, Maron M (2017) Ecological consequences of land clearing and policy reform in Queensland. Pac Conserv Biol 23(3):219–230

    Article  Google Scholar 

  • Ridoutt C, Lee A, Moloney B, Massey PD, Charman N, Jordan D (2014) Detection of brucellosis and leptospirosis in feral pigs in New South Wales. Aust Vet J 92(9):343–347

    Article  CAS  PubMed  Google Scholar 

  • Rhyan J, Spraker T (2010) Emergence of diseases from wildlife reservoirs. Vet Pathol 47(1):34–39

    Google Scholar 

  • Sabirovic M, O’Neil BD (1999) Managing animal health emergencies through prevention and preparedness in Oceania. Reveu Scientifique Et Technique-Office International Des Epizooties 18(1):38–46

    Article  CAS  Google Scholar 

  • Sharp R, Wollscheid K (2009) An overview of recreational hunting in North America, Europe and Australia. In: Dickson B, Hutton J, Adams WM (eds) Recreational hunting, conservation and rural livelihoods: science and practice. Blackwell Publishing Ltd, Oxford, UK, pp 25–38

    Chapter  Google Scholar 

  • Shi H, Singh A, Kant S, Zhu Z, Waller E (2005) Integrating habitat status, human population pressure, and protection status into biodiversity conservation priority setting. Conserv Biol 19(4):1273–1285

    Article  Google Scholar 

  • Stewart R (2006) An economic survey of developing countries in the Pacific region. Australian Government, Treasury Department Canberra, pp 91–115

    Google Scholar 

  • Storey AA, Athens JS, Bryant D, Carson M, Emery K, deFrance S, Higham C, Huynen L, Intoh M, Jones S, Kirch PV, Ladefoged T, McCoy P, Morales-Muniz A, Quiroz D, Reitz E, Robins J, Walter R, Matisoo-Smith E (2012) Investigating the global dispersal of chickens in prehistory using ancient mitochondrial DNA signatures. PLoS One 7(7):e39171

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sullivan JD, Takekawa JY, Spragens KA, Newman SH, Xiao X, Leader PJ, Smith B, Prosser DJ (2018) Waterfowl spring migratory behavior and avian influenza transmission risk in the changing landscape of the east Asian-Australian flyway. Front Ecol Evol 6:206

    Article  Google Scholar 

  • Swayne DE, Hill RE, Clifford J (2017) Safe application of regionalization for trade in poultry and poultry products during highly pathogenic avian influenza outbreaks in the USA. Avian Pathol 46(2):125–130

    Article  PubMed  Google Scholar 

  • Towns DR (2009) Eradications as reverse invasions: lessons from Pacific rat (Rattus exulans) removals on New Zealand islands. Biol Invasions 11:1719–1733

    Article  Google Scholar 

  • Tracey JP, Woods R, Rosheir D, West P, Saunders GR (2004) The role of wild birds in the transmission of avian influenza for Australia: an ecological perspective. Emu 104:109–124

    Article  Google Scholar 

  • Turner AJ (2011) Endemic disease control and regulation in Australia 1901-2010. Aust Vet J 89(10):413–421

    Article  PubMed  Google Scholar 

  • United Nations (2019) World urbanization prospects: the 2018 revision. Department of Economic and Social Affairs, Population Division, New York

    Google Scholar 

  • Vicente J, Höfle U, Garrido JM, Fernández-de-Mera IG, Juste R, Barral M, Gortazar C (2006) Wild boar and red deer display high prevalence of tuberculosis-like lesions in Spain. Vet Res 37:107–119

    Article  PubMed  Google Scholar 

  • Vicente J, Hofle U, Garrido JM, Fernández-de-Mera IG, Acevedo P, Juste R, Barral M, Gortazar C (2007) Risk factors associated with the prevalence of tuberculosis-like lesions in fenced wild boar and red deer in south-Central Spain. Vet Res 38:451–464

    Article  PubMed  Google Scholar 

  • Vicente J, Barasona JA, Acevedo P, Ruíz-Fons JF, Boadella M, Díez-Delgado I, Beltrán-Beck B, González-Barrio D, Queirós J, Montoro V, Fuente JD, Gortázar C (2013) Temporal trend of tuberculosis in wild ungulates from Mediterranean Spain. Transbound Emerg Dis 60(Suppl 1):92–103

    Article  PubMed  Google Scholar 

  • Victoriano AFB, Smythe LD, Gloriani-Barzaga N, Cavinta LL, Kasai T, Limpakarnjanarat K, Ong BL, Yanagihara Y, Yoshida SI, Adler B (2009) Leptospirosis in the Asia Pacific region. BioMed Central Infect Dis 9:147

    Article  Google Scholar 

  • Vijaykrishna D, Deng Y, Su YF, Fourment M, Iannello P, Arzey GG, Hansbro PM, Arzey KE, Kirkland PD, Warner S, O’Riley K, Barr IG, Smith GD, Hurt AC (2013) The recent establishment of north American H10 lineage influenza viruses in Australian Wild waterfowl and the evolution of Australian avian influenza viruses. J Virol 87(18):10182–10189

    Google Scholar 

  • Wakelin CA, Churchman OT (1991) Prevalence of bovine tuberculosis in feral pigs in Central Otago. Surveillance 18:19–20

    Google Scholar 

  • Wang TT, Palese P (2009) Unraveling the mystry of swine influenza virus. Cell 137(6):983–985

    Article  CAS  PubMed  Google Scholar 

  • Warburton B, Livingstone P (2015) Managing and eradicating wildlife tuberculosis in New Zealand. N Z Vet J 63(1):77–88

    Article  PubMed  PubMed Central  Google Scholar 

  • Waters WR, Palmer MV, Buddle BM (2012) Vordermeier HM (2012) bovine tuberculosis vaccine research: historical perspectives and recent advances. Vaccine 30:2611–2622

    Article  CAS  PubMed  Google Scholar 

  • Whitnall T, Pitts N (2019) Meat consumption: analysis of global meat consumption trends. Australian government, department of agriculture, Water and the Environment, Canberra

    Google Scholar 

  • Wiethoelter AK, Betran-Alcrudo D, Kock R, Mor SM (2015) Global trends in infectious diseases at the wildlife-livestock interface. Proc Natl Acad Sci 112(31):9662–9667

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Michel De Garine-Wichatitsky .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Humphrys, S., De Garine-Wichatitsky, M. (2021). Characteristics and Perspectives of Disease at the Wildlife-Livestock Interface in Oceania. In: Vicente, J., Vercauteren, K.C., Gortázar, C. (eds) Diseases at the Wildlife - Livestock Interface. Wildlife Research Monographs, vol 3. Springer, Cham. https://doi.org/10.1007/978-3-030-65365-1_7

Download citation

Publish with us

Policies and ethics