Skip to main content

Natural and Historical Overview of the Animal Wildlife-Livestock Interface

  • Chapter
  • First Online:
Diseases at the Wildlife - Livestock Interface

Part of the book series: Wildlife Research Monographs ((WIREMO,volume 3))

  • 745 Accesses

Abstract

The interfaces among different compartments have been spaces of transition and contact where pathogens have adapted to new hosts. The domestication and establishment of local settlements modelled multiple wildlife–livestock–human interfaces, characterized by the maintenance of “crowd diseases” (both by humans and/or by animals) and the continuous presence of a domestic pathogen reservoir. Through the course of human history, our impact on the natural environment has increasingly magnified, including our ability to alter, shape, and reshape nature at different rates, often varying by epochs, civilizations, and regions. Human expansion, technical development, trade, population growth, and growing interdependence of the global economy have both increased livestock spatial ranges and opportunities for animal pathogens to cross geographic boundaries. Correspondingly, there is a greater risk of disease re-emergence and potential spillback into wildlife populations that may act as disease reservoirs, which has determined the characteristics of wildlife–livestock interfaces and subsequent opportunities for pathogen transfer that exist today. The wildlife–livestock–human interface has also intensified as a result of human encroachment into historically wilderness areas, especially in tropical ecosystems. Thus, the wildlife–livestock interface has advanced to become more interconnected than ever as humans and animals (domestic and wild) increasingly share a common global infectious disease ecology (i.e., the wildlife–livestock interface is becoming global). However, the severity of disease related human–wildlife conflicts has a complex nature. While wildlife is becoming less abundant and more fragmented, wildlife–livestock interfaces have become more frequent and interconnected. For example, although there are catastrophic wild species extinctions in certain regions (e.g., tropical forests), we also observe the recovery or expansion of some wildlife populations over expansive areas that are associated with increased sanitary risks at the human–livestock interface (e.g., ungulates in temperate regions of the Northern hemisphere). Therefore, mitigating disease risk at wildlife–livestock–human interfaces must be a crucial component of modern wildlife management and it is essential to understand local, regional, and international social, economic, and cultural systems to better focus strategic disease control programs. Integral population and disease monitoring are also necessary to improve knowledge of the role of wildlife and the mode of transmission and emergence of new infections. Climate and associated anthropogenic and environmental change are impacting the distribution, abundance, behavior, and population dynamics of pathogens and hosts, threatening human health, and livelihoods. The current context urgently requires a better understanding of global warming impacts on the wildlife–livestock–human interface, particularly in complex host/pathogen/vector systems. Transdisciplinary integrative approaches that enable countries and international organizations to better target shared disease control programs and move toward disease eradication, which includes strategic research in collaboration with the medical sector, will be required to ensure decisions are scientifically informed for current challenges in the interest of humanity.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  • Acebes P, Traba J, Malo JE (2012) Co-occurrence and potential for competition between wild and domestic large herbivores in a south American desert. J Arid Environ 77:39–44

    Article  Google Scholar 

  • Aiewsakun P, Katzourakis A (2017) Origin of retroviruses in the early Palaeozoic era. Nat Commun 10:8

    Google Scholar 

  • Altizer S, Ostfeld RS, Johnson PTJ, Kutz S, Harvell CD (2013) Climate change and infectious diseases: from evidence to a predictive framework. Science 341:514–519

    Article  CAS  PubMed  Google Scholar 

  • Angelakιs AN, Zaccaria D, Krasilnikoff J, Salgot M, Bazza M, Roccaro P, Jimenez B, Kumar A, Yinghua W, Baba A, Harrison JA, Garduno-Jimenez A, Fereres E (2020) Irrigation of world agricultural lands: evolution through the millennia. Water 12:1285

    Article  Google Scholar 

  • Arbuckle BS, Atici L (2013) Initial diversity in sheep and goat management in Neolithic southwestern Asia. Levant 45:219–235

    Article  Google Scholar 

  • Arilla M, Rosell J, Blasco R (2020) A neo-taphonomic approach to human campsites modified by carnivores. Sci Rep 10:6659

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Baker BJ, Armelagos GJ (1988) The origin and antiquity of syphilis: paleopathological diagnosis and interpretation. Curr Anthropol 29:703–738

    Article  CAS  PubMed  Google Scholar 

  • Balboni A, Palladini A, Bogliani G, Battilani M (2010) Detection of a virus related to betacoronaviruses in Italian greater horseshoe bats. Epidemiol Infect 139:216–219

    Article  PubMed  Google Scholar 

  • Barasona JA, VerCauteren KC, Saklou N, Gortazar C, Vicente J (2013) Effectiveness of cattle operated bump gates and exclusion fences in preventing ungulate multi-host sanitary interaction. Prev Vet Med 111:42–50

    Article  CAS  PubMed  Google Scholar 

  • Barasona JA, Latham MC, Acevedo P, Armenteros JA, Latham AM, Gortazar C, Carro F, Soriguer RC, Vicente J (2014) Spatiotemporal interactions between wild boar and cattle: implications for cross-species disease transmission. Vet Res 45:122

    Article  PubMed  PubMed Central  Google Scholar 

  • Barlow A, Cahill JA, Hartmann S, Theunert C, Xenikoudakis G, Fortes GG, Paijmans JLA, Rabeder G, Frischauf C, Grandal-d’Anglade A, García-Vázquez A, Murtskhvaladze M, Saarma U, Anijalg P, Skrbinšek T, Bertorelle G, Gasparian B, Bar-Oz G, Pinhasi R, Slatkin M, Dalén L, Shapiro B, Hofreiter M (2018) Partial genomic survival of cave bears in living brown bears. Nat Ecol Evol 2:1563–1570

    Article  PubMed  PubMed Central  Google Scholar 

  • Barrett R, Kuzawa CW, McDade T, Armelagos GJ (1998) Emerging and re-emerging infectious diseases: the third epidemiologic transition. Annu Rev Anthropol 27:247–271

    Google Scholar 

  • Baudet C, Donati B, Sinaimeri B, Crescenzi P, Gautier C, Matias C, Sagot MF (2015) Cophylogeny reconstruction via an approximate Bayesian computation. Syst Biol 64:416–431

    Google Scholar 

  • Becker DJ, Washburne AD, Faust CL, Pulliam JRC, Mordecai EA, Lloyd-Smith JO, Plowright RK (2019) Dynamic and integrative approaches to understanding pathogen spillover. Philos Trans R Soc Lond B Biol Sci 374:20190014

    Article  PubMed  PubMed Central  Google Scholar 

  • Bennett M, Begon ME (1997) Virus zoono. Bridge University Press

    Google Scholar 

  • Berger J, Wangchuk T, Briceño C, Vila A, Lambert JE (2020) Disassembled food webs and messy projections: modern ungulate communities in the face of unabating human population growth. Front Ecol Evol 8:128

    Article  Google Scholar 

  • Bertranpetit E, Jombart T, Paradis E, Pena H, Dubey J, Su C, Mercier A, Devillard S, Ajzenberg D (2017) Phylogeography of toxoplasma gondii points to a south American origin. Infect Genet Evol 48:150–155

    Article  PubMed  Google Scholar 

  • Bidokhti MR, Tråvén M, Krishna NK, Munir M, Belák S, Alenius S, Cortey M (2013) Evolutionary dynamics of bovine coronaviruses: natural selection pattern of the spike gene implies adaptive evolution of the strains. J Gen Virol 94:2036–2049

    Article  CAS  PubMed  Google Scholar 

  • Blasco JM (1990) Brucella ovis. In: Nielsen K, Duncan JR (eds) Animal brucellosis. CRC Press, Boca Raton, FL, pp 351–382

    Google Scholar 

  • Blumenschine RJ, Pobiner BL (2006) Zooarchaeology and the ecology of Oldowan hominin carnivory. In: Ungar P (ed) Early hominin diets: the known, the unknown, and the unknowable. Oxford University Press, Oxford, pp 167–190

    Google Scholar 

  • Boivin NL, Zeder MA, Fuller DQ, Crowther A, Larson G, Erlandson JM, Denham T, Petraglia MD (2016) Ecological consequences of human niche construction: examining long-term anthropogenic shaping of global species distributions. PNAS 113:6388–6396

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bonneaud C, Weinert LA, Kuijper B (2019) Understanding the emergence of bacterial pathogens in novel hosts. Philos Trans R Soc Lond Ser B Biol Sci 374:20180328

    Article  Google Scholar 

  • Bourn D, Blench R (1999) Can livestock and wildlife co-exist? An interdisciplinary approach. Overseas Development Institute, The Environmental Research Group Oxford, Oxford

    Google Scholar 

  • Brooks DR, Ferrao AL (2005) The historical biogeography of co-evolution: emerging infectious diseases are evolutionary accidents waiting to happen. J Biogeogr 32:1291–1299

    Article  Google Scholar 

  • Brosch R, Gordon V, Marmiesse M, Brodin P, Buchrieser C, Eiglmeier K, Garnier T, Gutierrez C, Hewinson G, Kremer K, Parsons LM, Pym AS, Samper S, van Soolingen D, Cole ST (2002) A new evolutionary scenario for the Mycobacterium tuberculosis complex. Proc Natl Acad Sci U S A 99:3684–3689

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Brunet FG, Pilbeam D, Mackaye HT, Likiusm A, Ahounta D, Beauvilain A, Blondel C, Bocherens H, Boisserie JR, De Bonis L, Coppens Y, Dejax J, Denys C, Duringer P, Eisenmann V, Fanone G, Fronty P, Geraads D, Lehmann T, Lihoreau F, Louchart A, Mahamat A, Merceron G, Mouchelin G, Otero O, Pelaez Campomanes P, Ponce De Leon M, Rage JC, Sapanet M, Schuster M, Sudre J, Tassy P, Valentin X, Vignaud P, Viriot L, Zazzo A, Zollikofer C (2002) A new hominid from the upper Miocene of Chad, Central Africa. Nature 418:145–151

    Article  CAS  PubMed  Google Scholar 

  • Burnet FM (1962) Natural history of infectious disease manual. Am. Tious disease, Washington, DC/Cambridge Public Health Association, Cambridge, UK

    Google Scholar 

  • Cabal A, Vicente J, Alvarez J, Barasona JA, Boadella M, Dominguez L, Gortazar C (2017) Human influence and biotic homogenization drive the distribution of Escherichia coli virulence genes in natural habitats. Microbiology 6(3):1–10

    Google Scholar 

  • Cagliani R, Forni D, Sironi M (2019) Mode and tempo of human hepatitis virus evolution. Comput Struct Biotechnol J 17:1384–1395

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Caron A, Morand S, de Garine-Wichatitsky M (2020) Epidemiological interaction at the wildlife-livestock-human Interface: can we anticipate emerging infectious diseases in their hotspots? A framework for understanding emerging diseases processes in their hot spots. New Front Mol Epidemiol Infect Dis 11:311–332

    Google Scholar 

  • Cassidy A (2015) Humans, other animals and ‘one health’ in the early twenty-first century. In: Woods A, Bresalier M, Cassidy A, Mason Dentinger R (eds) Animals and the shaping of modern medicine one health and its histories. Springer, New York

    Google Scholar 

  • Caswell JL, Williams KJ (2016) Respiratory system. In: Jubb K, Palmer’s Pathology of Domestic Animals (eds) Pathology of domestic animals, vol 2, 6th edn. Elsevier, St. Louis, MO, pp 465–591

    Google Scholar 

  • Chisholm RH, Trauer JM, Curnoe D, Tanaka MM (2016) Controlled fire use in early humans might have triggered the evolutionary emergence of tuberculosis. Proc Natl Acad Sci U S A 113:9051–9056

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chomel BB, Belotto A, Meslin F (2007) Wildlife, exotic pets, and emerging Zoonoses. Emerg Infect Dis 13:6–11

    Article  PubMed  PubMed Central  Google Scholar 

  • Clayton DH, Moore J (eds) (1997) Host-parasite evolution: general principles and avian models. Oxford University Press, London

    Google Scholar 

  • Cleaveland S, Laurenson MK, Taylor LH (2001) Diseases of humans and their domestic mammals: pathogen characteristics, host range and the risk of emergence. Philos Trans R Soc Lond Ser B Biol Sci 356:991–999

    Article  CAS  Google Scholar 

  • Colominas L, Schlumbaum A, Saña M (2014) The impact of the Roman empire on animal husbandry practices: study of the changes in cattle morphology in the north-east of the Iberian Peninsula through osteometric and ancient DNA analyses. Archaeol Anthropol Sci 6:1–16

    Article  Google Scholar 

  • Cretois B, JDCl L, Kaltenborn BP, Trouwborst A (2019) What form of human-wildlife coexistence is mandated by legislation? A comparative analysis of international and national instruments. Biodivers Conserv 28:1729–1741

    Article  Google Scholar 

  • Croitor R, Brugal JP (2010) Ecological and evolutionary dynamics of the carnivore community in Europe during the last 3 million years. Quat Int 212:98–108

    Article  Google Scholar 

  • da Paixão Sevá A, Martcheva M, Tuncer N, Fontana I, Carrillo E, Moreno J, Keesling J (2017) Efficacies of prevention and control measures applied during an outbreak in Southwest Madrid, Spain. PLoS One 12(10):e0186372

    Article  CAS  Google Scholar 

  • de Graaf M, Osterhaus AD, Fouchier RAM, Holmes EC (2008) Evolutionary dynamics of human and avian Metapneumoviruses. J Gen Virol 89:2933–2942

    Article  PubMed  CAS  Google Scholar 

  • Dearlove B, Wilson DJ (2013) Coalescent inference for infectious disease: meta-analysis of hepatitis C. Phil Trans R Soc B 368:20120314

    Article  PubMed  PubMed Central  Google Scholar 

  • Delgado CL, Narrod CA (2003) Policy, technical, and environmental determinants and implications of the scaling-up of livestock production in four fast–growing developing countries: a synthesis. International Food Policy Research Institute, Washington, DC

    Google Scholar 

  • Demogines A, Abraham J, Choe H, Farzan M, Sawyer SL (2013) Dual host-virus arms races shape an essential housekeeping protein. PLoS Biol 11(5):e1001571

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Dennell R, Roebroeks W (2006) An Asian perspective on early human dispersal from Africa. Nature 438:1099–1104

    Article  CAS  Google Scholar 

  • Devendra C, Thomas D (2002) Crop-animal interactions in mixed farming systems in Asia. Agr Syst 71:27–40

    Article  Google Scholar 

  • Di Lernia S, Cremaschi M (1996) Taming barbary sheep: wild animal management by early Holocene hunter-gatherers at Uan Afuda (Libyan Sahara). Nyame Akua 46:43–54

    Google Scholar 

  • Diamond J (1987) The worst mistake in the history of the human race. Discover 8:64–66

    Google Scholar 

  • Dippenaar A, Parsons SDC, Sampson SL, van der Merwe RG, Drewe JA, Abdallah AM, Siame KK, van Pittius NCG, van Helden PD, Pain A, Warren RM (2015) Whole genome sequence analysis of Mycobacterium suricattae. Tuberculosis 95:682–688

    Article  CAS  PubMed  Google Scholar 

  • Dobson AP, Hudson PJ (1992) Regulation and stability of a free-living host-parasite system – Trichostrongylus tenuis in red grouse. 2. Population models. J Anim Ecol 61:487–498

    Article  Google Scholar 

  • Domingo E (2016) Long-term virus evolution in nature. In: Virus as populations composition, complexity, dynamics, and biological implications. Academic Press, Elsevier, San Diego, CA, pp 227–262

    Google Scholar 

  • Domínguez Rodrigo M, Pickering R, Bunn HT (2010) Configurational approach to identifying the earliest hominin butchers. Proc Natl Acad Sci U S A 107:20929–20934

    Article  PubMed  PubMed Central  Google Scholar 

  • Doughty CE, Prys-Jones Y, Faurby S, Abraham A, Hepp C, Leshyk V, Fofanov VY, Nieto JNC, Svenning C, Galetti M (2020) Megafauna decline have reduced pathogen dispersal which may have increased emergent infectious diseases. Ecography 43:1107. https://doi.org/10.1101/2020.01.21.914531

    Article  Google Scholar 

  • Dubey JP (2010) Toxoplasmosis of animals and humans. CRC, Boca Raton, p 313

    Google Scholar 

  • Düx A, Lequime S, Patrono LV, Vrancken B, Boral S, Gogarten JF, Hilbig A, Horst D, Merkel K, Prepoint B, Santibanez S, Schlotterbeck J, Suchard MA, Ulrich M, Widulin N, Mankertz A, Leendertz FH, Harper K, Schnalke T, Lemey P, Calvignac-Spencer S (2020) Measles virus and rinderpest virus divergence dated to the sixth century BCE. Science 368:1367–1370

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Dzialuk A, Zastempowska E, Skórzewski R, Twarużek M, Grajewski J (2018) High domestic pig contribution to the local gene pool of free-living European wild boar: a case study in Poland. Mammal Res 63:65–71

    Article  Google Scholar 

  • Ellis EC, Klein Goldewijk K, Siebert S, Lightman D, Ramankutty N (2010) Anthropogenic transformation of the biomes, 1700 to 2000. Glob Ecol Biogeogr 19:589–606

    Google Scholar 

  • Emerman M, Malik HS (2010) Paleovirology—modern consequences of ancient viruses. PLoS Biol 8(2):e1000301

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Engering A, Hogerwerf L, Slingenbergh J (2013) Pathogen–host–environment interplay and disease emergence. Emerg Microbes Infect 2(2):e5

    CAS  PubMed  PubMed Central  Google Scholar 

  • Ervynck A, Hongo H, Meadow R (2001) Born free? New evidence for the status of Sus scrofa at Neolithic Cayonu Tepesi (southeastern Anatolia, Turkey). Paleorient 27:47–73

    Article  Google Scholar 

  • Faith JT, Rowan J, Du A (2019) Early hominins evolved within non-analog ecosystems. PNAS 116:21478–21483

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • FAO (1996) Wildlife utilization in Latin America: current situation and prospects for sustainable management. (FAO conservation guide – 25). Food and Agriculture Organization of the United Nations – FAO, Rome

    Google Scholar 

  • FAO (2006) World agriculture: towards 2030/2050 – interim report. FAO, Rome

    Google Scholar 

  • FAO (2007) Wild birds and avian influenza: an introduction to applied field research and disease sampling techniques. Edited by D. Whitworth, S.H. Newman, T. Mundkur and P. Harris. FAO animal production and health manual, no. 5, Rome. www.fao.org/avianflu

  • FAO (2012a) Lessons learned from the eradication of rinderpest for controlling other transboundary animal diseases. Proceedings of the GREP Symposium and High-Level Meeting, 12–15 October 2010, Rome, Italy. FAO animal production and health proceedings, no. 15. Rome, Italy

    Google Scholar 

  • FAO (2012b) State of the World’s forests 2012. Food and Agriculture Organization of the United Nations, Rome

    Google Scholar 

  • FAO (2016) State of the World’s Forests 2016. Forests and agriculture: land-use challenges and opportunities, Rome

    Google Scholar 

  • Felius M, Beerling ML, Buchanan DS, Theunissen B, Koolmees PA, Lenstra JA (2014) On the history of cattle genetic resources. Diversity 26:705–750

    Article  Google Scholar 

  • Fernandes AP, Nelson K, Beverley SM (1993) Evolution of nuclear ribosomal RNAs in kinetoplastid protozoa: perspectives on the age and origins of parasitism. Proc Natl Acad Sci U S A 90:11608–11612

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Fernández-de-Mera IG, Vicente J, Naranjo V, Fierro Y, Garde JJ, de la Fuente J, Gortazar C (2009) Impact of major histocompatibility complex class II polymorphisms on Iberian Red Deer parasitism and life history traits. Infect Genet Evol 9:1232–1239

    Article  PubMed  CAS  Google Scholar 

  • Fischer J, Abson DJ, Butsic V, Chappell MJ, Ekroos J, Hanspach J, Kuemmerle T, Smith HG, von Wehrden H (2014) Land sparing versus land sharing: moving forward. Conserv Lett 7:149–157

    Article  Google Scholar 

  • Fistani AB (1996) Sus scrofa priscus (Goldfuss, de Serres) (Mammalia, Artiodactyla, Suidae) from the middle Pleistocene layers of Gajtan 1 site, southeast of Shkoder (North Albania). Ann Palιontologie 82:177–229

    Google Scholar 

  • Foster JT, Price LB, Beckstrom-Sternberg SM, Pearson T, Brown WD, Kiesling DM et al (2012) Genotyping of Brucella species using clade specific SNPs. BMC Microbiol 12:110. https://doi.org/10.1186/1471-2180-12-110

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Frantz LAF, Schraiber JG, Madsen O, Megens H, Bosse M, Paudel Y, Semiadi G, Meijaard E, Li N, Crooijmans RPMA, Archibald AL, Slatkin M, Schook LB, Larson GM, Groenen MAM (2013) Genome sequencing reveals fine scale diversification and reticulation history during speciation in Sus. Genome Biol 14:R107. 2013

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Freedman AH, Gronau I, Schweizer RM, Ortega-Del Vecchyo D, Han E, Silva PM, Galaverni M, Fan Z, Marx P, Lorente-Galdos B, Beale H, Ramirez O, Hormozdiari F, Alkan C, Vilà C, Squire K, Geffen E, Kusak J, Boyko AR, Parker HG, Lee C, Tadigotla V, Siepel A, Bustamante CD, Harkins TT, Nelson SF, Ostrander EA, Marques-Bonet T, Wayne RK, Novembre J (2014) Genome sequencing highlights the dynamic early history of dogs. PLoS Genet 10:e1004016

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Gagneux S (2018) Ecology and evolution of Mycobacterium tuberculosis. Nat Rev Microbiol 16:202–213

    Article  CAS  PubMed  Google Scholar 

  • Gaspar P, Mesías FJ, Escribano M, Pulido F (2009) Sustainability in Spanish extensive farms (Dehesas): an economic and management indicator-based evaluation. Rangeland Ecol Manage 62:152–162

    Article  Google Scholar 

  • Gavier-Widen D, Gortazar C, Stahl K, Neimanis AS, Rossi S, Hard av Segerstad C, Kuiken T (2015) African swine fever in wild boar in Europe: a notable challenge. Vet Rec 176:199–200

    Article  CAS  PubMed  Google Scholar 

  • Germonpré M, Fedorov S, Danilov P, Galeta P, Jimenez E, Sablin M, Losey RJ (2017) Palaeolithic and prehistoric dogs and Pleistocene wolves from Yakutia: identification of isolated skulls. J Archaeol Sci 78:1–19

    Article  Google Scholar 

  • Gifford-Gonzalez D (2000) Animal disease challenges to the emergence of pastoralism in sub-Saharan Africa. Afr Archaeol Rev 17:95–139

    Article  Google Scholar 

  • Gilbert C, Feschotte C (2010) Genomic fossils calibrate the long-term evolution of hepadnaviruses. PLoS Biol 8:e1000495

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Godfroid J, Cloeckaert A, Liautard JP, Kohler S, Fretin D, Walravens K (2005) From the discovery of the Malta fever’s agent to the discovery of a marine mammal reservoir, brucellosis has continuously been a re-emerging zoonosis. Vet Res 36:313–326

    Article  PubMed  Google Scholar 

  • Godfroid J, DeBolle X, Roop RM, O’Callaghan D, Tsolis RM, Baldwin C, Santos RL, McGiven J, Olsen S, Nymo IH, Larsen A, Al Dahouk S, Letesson JJ (2014) The quest for a true one health perspective of brucellosis. Rev Sci Tech 33:521–538

    Article  CAS  PubMed  Google Scholar 

  • Goren-Inbar N, Alperson N, Kislev ME, Simchoni O, Melamed Y, Ben-Nun A, Werker E (2004) Evidence of hominin control of fire at Gesher Benot Ya’aqov, Israel. Science 304:725–727

    Article  CAS  PubMed  Google Scholar 

  • Gortazar C, Acevedo P, Ruiz-Fons JF, Vicente J (2006) Disease risk and overabundance of game species. Eur J Wildl Res 52:81–87

    Article  Google Scholar 

  • Gortazar C, Diez-Delgado I, Barasona JA, Vicente J, De La Fuente J, Boadella M (2014) The wild side of disease control at the wildlife-livestock-human interface: a review. Front Vet Sci 1:27

    PubMed  Google Scholar 

  • Gowlett JAJ (2016) The discovery of fire by humans: a long and convoluted process. Phil Trans R Soc B 371:20150164

    Article  PubMed  PubMed Central  Google Scholar 

  • Graham JP, Leibler JH, Price LB, Otte JM, Pfeiffer DU, Tiensin T, Silbergeld EK (2008) The animal-human Interface and infectious disease in industrial food animal production: rethinking biosecurity and biocontainment. Public Health Rep 123:282–299

    Article  PubMed  PubMed Central  Google Scholar 

  • Greenbaum G, Getz WM, Rosenberg NA, Feldman MW, Hovers E, Kolodny O (2019) Disease transmission and introgression can explain the long-lasting contact zone of modern humans and Neanderthals. Nat Commun 10:5003

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Greger M (2007) The long haul: risks associated with livestock transport. Biosecurity and Bioterrorism: Biodefense Strategy, Practice, and Science 5:301–312

    Article  Google Scholar 

  • Grigson C (1991) An African Origin for African cattle? Some archaeological evidence. Afr Archaeol Rev 9:119–144

    Article  Google Scholar 

  • Guzmán-Verri C, González-Barrientos R, Hernández-Mora G, Morales JA, Baquero-Calvo E, Chaves-Olarte E, Moreno E (2012) Brucella ceti and brucellosis in cetaceans. Front Cell Infect Microbiol 2:3. https://doi.org/10.3389/fcimb.2012.00003

    Article  PubMed  PubMed Central  Google Scholar 

  • Hallett MT, Lagergren J (2001) Efficient algorithms for lateral gene transfer problems, RECOMB ’01. ACM, San Diego

    Google Scholar 

  • Hoberg EP (2006) Phylogeny of Taenia: species definitions and origins of human parasites. Parasitol Int 55:S23–S30

    Article  PubMed  Google Scholar 

  • Hoberg EP, Brooks DR (2015) Evolution in action: climate change, biodiversity dynamics and emerging infectious disease. Philos Trans R Soc Lond Ser B Biol Sci 370(1665):20130553

    Article  Google Scholar 

  • Holmes EC (2011) The evolution of endogenous viral elements. Cell Host Microbe 10:368–377

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Huerta-Sánchez E, Jin X, Bianba AZ, Peter BM, Vinckenbosch N, Liang Y, Yi X, He M, Somel M, Ni P, Wang B, Ou X, Huasang, Luosang J, Xi Z, Cuo P, Li K, Gao G, Yin Y, Wang W, Zhang X, Xu X, Yang H, Li Y, Wang J, Wang J, Nielsen R (2014) Altitude adaptation in Tibetans caused by introgression of Denisovan-like DNA. Nature 512:194–197

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • IPCC (2013) Climate change 2013: the physical science basis. Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge University Press, Cambridge

    Google Scholar 

  • Jackson AP, Charleston MA (2004) A Cophylogenetic perspective of RNA–virus evolution. Mol Biol Evol 21:45–57

    Article  CAS  PubMed  Google Scholar 

  • Jones DS (2004) Rationalizing epidemics: meanings and uses of American Indian mortality since 1600. Harvard University Press, Cambridge, MA

    Book  Google Scholar 

  • Kamath PL, Foster JT, Drees KP, Luikart G, Quance C, Anderson NJ, Clarke PR (2016) Genomics reveals historic and contemporary transmission dynamics of a bacterial disease among wildlife and livestock. Nat Commun 7:11448

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kanginakudru S, Metta M, Jakati RD, Nagaraju J (2008) Genetic evidence from Indian red jungle fowl corroborates multiple domestication of modern day chicken. BMC Evol Biol 8:174

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Kaplan JO, Krumhardt KM, Zimmermann N (2009) The prehistoric and preindustrial deforestation of Europe. Quat Sci Rev 28:3016–3034

    Article  Google Scholar 

  • Kaplan JO, Krumhardt KM, Ellis EC, Ruddiman WF, Lemmen C, Goldewijk KK (2010) Holocene carbon emissions as a result of anthropogenic land cover change. The Holocene Special Issue:1–17

    Google Scholar 

  • Katzourakis A, Gifford RJ (2010) Endogenous viral elements in animal genomes. PLoS Genet 6(11):e1001191

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Keller A, Graefen A, Ball M, Matzas M, Boisguerin V, Maixner F, Leidinger P, Backes C, Khairat R, Forster M, Stade B, Franke A, Mayer J, Spangler J, McLaughlin S, Shah M, Lee C, Harkins TT, Sartori A, Moreno-Estrada A, Henn B, Sikora M, Semino O, Chiaroni J, Rootsi S, Myres NM, Cabrera VM, Underhill PA, Bustamante CD, Vigl EE, Samadelli M, Cipollini G, Haas J, Katus H, O’Connor BD, Carlson MR, Meder B, Blin N, Meese E, Pusch CM, Zink A (2012) New insights into the Tyrolean Iceman’s origin and phenotype as inferred by whole-genome sequencing. Nat Commun 3:698

    Article  PubMed  CAS  Google Scholar 

  • Kelly AG, Netzler NE, White PA (2016) Ancient recombination events and the origins of hepatitis E virus. BMC Evol Biol 16:210. Mol Biol Evol. 2015 May; 32(5): 1354–1364

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Key FM, Posth C, Esquivel-Gomez LR, Hübler R, Spyrou MA, Neumann GU, Furtwängler A, Sabin S, Burri M, Wissgott A, Lankapalli AK, Vågene ÅJ, Meyer M, Nagel S, Tukhbatova R, Khokhlov A, Chizhevsky A, Hansen S, Belinsky AB, Kalmykov A, Kantorovich AR, Maslov VE, Stockhammer PW, Vai S, Zavattaro M, Riga A, Caramelli D, Skeates R, Beckett J, Gradoli MG, Steuri N, Hafner A, Ramstein M, Siebke I, Lösch S, Erdal YS, Alikhan NF, Zhou Z, Achtman M, Bos K, Reinhold S, Haak W, Kühnert D, Herbig A, Krause J (2020) Emergence of human-adapted Salmonella enterica is linked to the Neolithization process. Nat Ecol Evol 4:324–333

    Article  PubMed  PubMed Central  Google Scholar 

  • Kilpatrick AM, Altizer S (2010) Disease ecology. Nat Educ Knowl 3(10):55

    Google Scholar 

  • Kossida S, Harvey PH, Zanotto PMA et al (2000) Lack of evidence for Cospeciation between Retroelements and their hosts. J Mol Evol 50:194–201

    Article  CAS  PubMed  Google Scholar 

  • Lanciotti RS, Roehrig JT, Deubel V, Smith J, Parker M, Steele K, Crise B, Volpe KE, Crabtree MB, Scherret JH, Hall RA, MacKenzie JS, Cropp CB, Panigrahy B, Ostlund E, Schmitt B, Malkinson M, Banet C, Weissman J, Komar N, Savage HM, Stone W, McNamara T, Gubler DJ (1999) Origin of the West Nile virus responsible for an outbreak of encephalitis in the northeastern United States. Science 286:2333–2337

    Article  CAS  PubMed  Google Scholar 

  • Larson G, Fuller DQ (2014) The evolution of animal domestication. Ann Rev Ecol Evol Syst 66:115–136

    Article  Google Scholar 

  • Leopardi S, Holmes EC, Gastaldelli M, Tassoni L, Priori P, Scaravelli D, Zamperin G, De Benedictis P (2018) Interplay between co-divergence and cross-species transmission in the evolutionary history of bat coronaviruses. Infect Genet Evol 58:279–289

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Leopold A (1933) Game management. Charles Scribner’s Sons, New York

    Google Scholar 

  • Lindo J, Huerta-Sánchez E, Nakagome S, Rasmussen M, Petzelt B, Mitchell J, Cybulski JS, Willerslev E, DeGiorgio M, Malhi RS (2016) A time transect of exomes from a native American population before and after European contact. Nat Commun 7:13175

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Linnell J, Zachos F (2010) Status and distribution patterns of European ungulates: genetics, population history and conservation. In: Ungulate management in Europe: problems and practices. Cambridge University Press, Cambridge, pp 12–53

    Google Scholar 

  • Linnell JDC, Cretois B, Nilsen EB, Rolandsen CM, Solberg EJ, Veiberg V, Kaczensky P, Moorter BV, Panzacchi M, Rauset GR, Kaltenborn B (2020) The challenges and opportunities of coexisting with wild ungulates in the human-dominated landscapes of Europe’s Anthropocene. Biol Conserv 244:108500

    Article  Google Scholar 

  • Littlejohn M, Locarnini S, Yuen L (2016) Origins and evolution of hepatitis B virus and hepatitis D virus. Cold Spring Harb Perspect Med 6:a021360

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Liu M, Tian H (2010) China’s land cover and land use change from 1700 to 2005: estimations from high-resolution satellite data and historical archives. Glob Biogeochem Cycles 24(3)

    Google Scholar 

  • Liu Y, Wu G, Yao Y, Miao Y, Luikart G, Baig M, Beja-Pereira A, Ding Z, Palanichamy MG, Zhang Y (2006) Multiple maternal origins of chickens: out of the asian jungles. Mol Phylogenet Evol 38:12–19

    Article  CAS  PubMed  Google Scholar 

  • Liu L, Bosse M, Megens H, Frantz LA, Lee Y, Irving-Pease EK, Narayan G, Groenen MAM, Madsen O (2019) Genomic analysis on pygmy hog reveals extensive interbreeding during wild boar expansion. Nat Commun 10:1992

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Long JL (2003) Introduced mammals of the world: their history, distribution and influence. CABI Publishing, Wallingford

    Book  Google Scholar 

  • Lorblanchet M (2001) La Grotte Ornée de Pergouset (Saint-Géry, Lot). Un Sanctuaire Secret Paléolithique Maison des Sciences de L’Homme

    Google Scholar 

  • Lott DF (2002) American Bison: a natural history. University of California Press, Berkeley

    Google Scholar 

  • Lovette IJ (2005) Glacial cycles and the tempo of avian speciation. Trends Ecol Evol 20:57–59

    Article  PubMed  Google Scholar 

  • Makarewicz C, Tuross N (2012) Finding fodder and tracking transhumance: isotopic detection of goat domestication processes in the near east. Curr Anthropol 53:495–505

    Article  Google Scholar 

  • Marciniak S (2016) Hunting for pathogens: ancient DNA and the historical record. In: Mant M, Holland A (eds) Beyond the bones. Academic Press, New York, pp 81–100

    Chapter  Google Scholar 

  • Mardanov AV, Bulygina ES, Nedoluzhko AV, Kadnikov VV, Beletskii AV, Tsygankova SV, Tikhonov A, Ravin N, Prokhorchuk EB, Skryabin KG (2012) Molecular analysis of the intestinal microbiome composition of mammoth and woolly rhinoceros. Dokl Biochem Biophys 445:471–474

    Google Scholar 

  • Marshall FB, Dobney K, Denham T, Capriles JM (2014) Evaluating the roles of directed breeding and gene flow in animal domestication. PNAS 29(111):6153–6158

    Article  CAS  Google Scholar 

  • McCleery DW (1992) American forests: a history of resiliency and recovery. USDA Forest Service and Forest History Society, Durham

    Google Scholar 

  • McGeoch DJ, Dolan A, Ralph AC (2000) Toward a comprehensive phylogeny for mammalian and avian herpesviruses. J Virol 74:10401–10406

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • McHugo GP, Dover M, Machugh D (2019) Unlocking the origins and biology of domestic animals using ancient DNA and paleogenomics. BMC Biol 17:98

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • McKeown RE (2010) The epidemiologic transition: changing patterns of mortality and population dynamics. Am J Lifestyle Med 3(1 Suppl):19S–26S

    Google Scholar 

  • McMichael J (2004) Environmental and social influences on emerging infectious diseases: past, present and future. Philos Trans R Soc Lond Ser B Biol Sci 359:1049–1058

    Article  CAS  Google Scholar 

  • Messmer TA (2000) The emergence of human wildlife conflict management: turning challenges into opportunities. Int Biodet Biodeg 45:97–102

    Article  Google Scholar 

  • Meyerson NR, Sawyer SL (2011) Two-stepping through time: mammals and viruses. Trends Microbiol 19:286–294

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Michelet L, Dauga C (2012) Molecular evidence of host influences on the evolution and spread of human tapeworms. Biol Rev Camb Philos Soc 87:731–741

    Article  PubMed  Google Scholar 

  • Ming L, Yuan L, Yi L, Ding G, Hasi S, Chen G, Jambl T, Hedayat-Evright N, Batmunkh M, Badmaevna GK, Gan-Erdene T, Ts B, Zhang W, Zulipikaer A, Hosblig, Erdemt, Natyrov A, Mamay P, Narenbatu MG, Narangerel C, Khongorzul O, He J, Hai L, Lin W, Sirendalai S, Aiyisi LY, Wang Z, Jirimutu (2020) Whole-genome sequencing of 128 camels across Asia reveals origin and migration of domestic Bactrian camels. Commun Biol 3(1):1

    Article  PubMed  PubMed Central  Google Scholar 

  • Miran MB, Kasuku AA, Swai ES (2017) Prevalence of echinococcosis and Taenia hydatigena cysticercosis in slaughtered small ruminants at the livestock-wildlife interface areas of Ngorongoro, Tanzania. Vet World 10:411–417

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Molnár PK, Kutz SJ, Hoar BM, Dobson AP (2014) Metabolic approaches to understanding climate change impacts on seasonal host–macroparasite dynamics. Ecol Lett 16:9–21

    Article  Google Scholar 

  • Molne A (2010) Sentient genetics: breeding the animal breeder as fundamental other. J Eighteenth-Century Stud 33:584–597

    Google Scholar 

  • Morand S, McIntyre KM, Baylis M (2014) Domesticated animals and human infectious diseases of zoonotic origins: domestication time matters. Infect Genet Evol 24:76–81

    Article  PubMed  Google Scholar 

  • Moreno E (1992) Brucella evolution. In: Plommet M (ed) Prevention of brucellosis in mediterranean countries. Pudoc Scientific Publishers, Wageningen, pp 198–121

    Google Scholar 

  • Moreno E (1998) Genome evolution within the alpha: why do some bacteria not possess plasmids and others exhibit more than one different chromosome? Figure 1. FEMS Microbiology Reviews 22(4):255–275

    Article  CAS  PubMed  Google Scholar 

  • Moreno E (2014) Retrospective and prospective perspectives on zoonotic brucelosis. Front Microbiol 5:213

    Article  PubMed  PubMed Central  Google Scholar 

  • Moreno E, Moriyón I (2002) Brucella melitensis: a nasty bug with hidden credentials for virulence. Proc Natl Acad Sci U S A 99:1–3. https://doi.org/10.1073/pnas.022622699

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mostowy S, Cousins D, Brinkman J, Aranaz A, Behr MA (2002) Genomic deletions suggest a phylogeny for the Mycobacterium tuberculosis complex. J Infect Dis 186:74–80

    Article  CAS  PubMed  Google Scholar 

  • Murray DL, Cox EW, Ballard WB, Whitlaw HA, Lenarz MS, Custer TW, Barnett T, Fuller TK (2006) Pathogens, nutritional deficiency and climate influences on a declining moose population. Wildl Monogr 166:1–30

    Article  Google Scholar 

  • Neiderud C (2015) How urbanization affects the epidemiology of emerging infectious diseases. Infect Ecol Epidemiol 5:27060. https://doi.org/10.3402/iee.v5.27060

    Article  PubMed  Google Scholar 

  • Nelson M, Worobey M (2018) Origins of the 1918 pandemic: revisiting the swine “mixing vessel” hypothesis. Am J Epidemiol 187:2498–2502

    Article  PubMed  Google Scholar 

  • Newell DG, Koopmans M, Verhoef L, Duizer E, Aidara-Kane A, Sprong H, Opsteegh M, Langelaar M, Threfall J, Scheutz F, van der Giessen J, Kruse H (2010) Food-borne diseases-the challenges of 20 years ago still persist while new ones continue to emerge. Int J Food Microbiol 139:S3–S15

    Article  PubMed  PubMed Central  Google Scholar 

  • Newfield TP (2015) Human-bovine plagues in the early middle ages. J Interdiscip Hist 46:1–38

    Article  Google Scholar 

  • Olden JD (2006) Biotic homogenization: a new research agenda for conservation biogeography. J Biogeogr 33:2027–2039

    Article  Google Scholar 

  • Orton RJ, Wright CF, Morelli MJ, Juleff N, Thébaud G, Knowles NJ, Valdazo-González B, Paton DJ, King DP, Daniel TH (2013) Observing micro-evolutionary processes of viral populations at multiple scales. Phil Trans R Soc B 368:20120203

    Article  PubMed  PubMed Central  Google Scholar 

  • Park M, Loverdo C, Schreiber SJ, Lloyd-Smith JO (2013) Multiple scales of selection influence the evolutionary emergence of novel pathogens. Philos Trans R Soc Lond Ser B Biol Sci 368:20120333

    Article  Google Scholar 

  • Pearce-Duvet JM (2006) The origin of human pathogens: evaluating the role of agriculture and domestic animals in the evolution of human disease. Biol Rev Camb Philos Soc 81:369–382

    Article  PubMed  Google Scholar 

  • Pearson J, Salman MD, BenJabara K, Brown C, Formenty P, Griot C, James A, Jemmi T, King L, Lautner E, McCluskey BJ. Meslin FX, Ragan V (2005) Global risks of infectious animal diseases. Council for Agricultural Science and Technology, Issue Paper No. 28

    Google Scholar 

  • Pepin KM, Lass S, Pulliam JRC, Read AF, Lloyd-Smith JO (2010) Identifying genetic markers of adaptation for surveillance of viral host jumps. Nat Rev Microbiol 8:802–813

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Plowright RK, Parrish CR, McCallum H, Hudson PJ, Ko AI, Graham AL, Lloyd-Smith L-SJO (2017) Pathways to zoonotic spill over. Nat Rev Microbiol 15:502–510

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Poinar G (2009) Description of an early cretaceous termite (Isoptera: Kalotermitidae) and its associated intestinal protozoa, with comments on their co-evolution. Parasit Vectors 2:12

    Article  PubMed  PubMed Central  Google Scholar 

  • Poinar G (2018) Vertebrate pathogens vectored by ancient hematophagous arthropods. Hist Biol 32:888. https://doi.org/10.1080/08912963.2018.1545018

    Article  Google Scholar 

  • Prugnolle F, Ollomo B, Durand P, Yalcindag E, Arnathau C, Elguero E, Berry A, Pourrut X, Gonzalez JP, Nkoghe D, Akiana J, Verrier D, Leroy E, Ayala FJ, Renauda F (2011) African monkeys are infected by Plasmodium falciparum nonhuman primate-specific strains. Proc Natl Acad Sci U S A 19(108):11948–11953

    Article  Google Scholar 

  • Pybus OG, Fraser C, Rambaut A (2013) Evolutionary epidemiology: preparing for an age of genomic plenty. Philos Trans R Soc Lond Ser B Biol Sci 368:20120193

    Article  CAS  Google Scholar 

  • Rappole JH, Derrickson SR, Hubálek Z (2000) Migratory birds and spread of West Nile virus in the Western hemisphere. Emerg Infect Dis 6:319–328

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Reperant LA, Giuseppe Cornaglia G, Osterhaus AD (2012) The importance of understanding the human-animal interface: from early hominins to global citizens. Curr Top Microbiol Immunol 365:49–81

    PubMed Central  Google Scholar 

  • Restif O, Graham AL (2015) Within-host dynamics of infection: from ecological insights to evolutionary predictions. Philos Trans R Soc Lond B 370:20140304

    Article  Google Scholar 

  • Reullier J, Pérez-Tris J, Bensch S, Secondi J (2006) Diversity, distribution and exchange of blood parasites meeting at an avian moving contact zone. Mol Ecol 15:753–763

    Article  PubMed  Google Scholar 

  • Rich SM, Ayala FJ (2010) Progress in malaria research: the case for phylogenetics. Adv Parasitol 54:255–280

    Article  Google Scholar 

  • Ripple W, Newsome TM, Wolf C, Dirzo R, Everatt KT, Hayward MW, Kerley GIH, Levi T, Lindsey PA, Macdonald DW, MY PLE, Sandom CJ, Terborgh J, Van Valkenburgh B (2015) Collapse of the world’s largest herbivores. Sci Adv 1:e1400103

    Article  PubMed  PubMed Central  Google Scholar 

  • Røed KH, Flagstad Ø, Nieminen M, Holand Ø, Dwyer MJ, Røv N, Vilà C (2008) Genetic analyses reveal independent domestication origins of Eurasian reindeer. Proc Biol Sci 275:1849–1855

    PubMed  PubMed Central  Google Scholar 

  • Roeder P, Mariner J, Kock R (2013) Rinderpest: the veterinary perspective on eradication. Philos Trans R Soc Lond Ser B Biol Sci 368:20120139

    Article  Google Scholar 

  • Rogalski MA, Gowler CD, Shaw CL, Hufbauer RA, Duffy MA (2017) Human drivers of ecological and evolutionary dynamics in emerging and disappearing infectious disease systems. Philos Trans R Soc Lond Ser B Biol Sci 372:20160043

    Article  Google Scholar 

  • Rohr JR, Dobson AP, Johnson PTJ, Kilpatrick AM, Paull SH, Raffel TR, Ruiz-Moreno D, Thomas MB (2011) Frontiers in climate change-disease research. Trends Ecol Evol 26:270–277

    Article  PubMed  PubMed Central  Google Scholar 

  • Rose H, Hoar B, Kutz SJ, Morgan ER (2014) Exploiting parallels between livestock and wildlife: predicting the impact of climate change on gastrointestinal nematodes in ruminants. Int J Parasitol Parasit Wildl 3:209–219

    Article  Google Scholar 

  • Rossel S, Marshall F, Peters J, Pilgram T, Adams MD, O’Connor D (2008) Domestication of the donkey: timing, processes and indicators. Proc Natl Acad Sci 105:3715–3720

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Rudolf VH, Antonovics J (2007) Disease transmission by cannibalism: rare event or common occurrence? Proc R Soc Biol Sci 274:1205–1210

    Article  Google Scholar 

  • Sansoni U (1994) Lepiu antiche pitture del Sahara. Jaca Boo, Milano

    Google Scholar 

  • Sayer J (2009) Reconciling conservation and development: are landscapes the answer? Biotropica 41:649–652

    Article  Google Scholar 

  • Schiffels S, Durbin R (2014) Inferring human population size and separation history from multiple genome sequences. Nat Genet 46:919–925

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Schopf JW, Kitajima K, Spicuzza MJ, Kudryavtsev AB, Valley JW (2018) Archaea in the Archean. Proc Natl Acad Sci 115:53–58

    Article  CAS  PubMed  Google Scholar 

  • Senut B, Pickfor M, Gommery D, Mein P, Cheboi K, Coppens Y (2001) First hominid from the Miocene (Lukeino formation, Kenya). Comptes Rendus de l’Academie des Sciences, Series IIA – Earth and Planetary Science 332:137–144

    Google Scholar 

  • Shury TK, Nishi JS, Elkin BT, Wobeser GA (2015) Tuberculosis and brucellosis in wood bison (Bison bison athabascae) in northern Canada: a renewed need to develop options for future management. J Wildl Dis 51:543–555

    Article  CAS  PubMed  Google Scholar 

  • Silva JC, Egan A, Friedman R, Munro JB, Carlton JM, Hughes AL (2011) Genome sequences reveal divergence times of malaria parasite lineages. Parasitology 138:1737–1749

    Article  PubMed  Google Scholar 

  • Silva JC, Egan A, Arze C, Spouge JL, Harris DG (2015) A new method for estimating species age supports the coexistence of malaria parasites and their mammalian hosts. Mol Biol Evol 32:1354–1364

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Slingenbergh J, Gilbert M, de Balogh KI, Wint W (2004) Ecological sources of’ zoonotic diseases. Rev Sci Tech Off Int Epiz 23:467

    Article  CAS  Google Scholar 

  • Smith GJD, Bahl J, Vijaykrishna D, Zhang J, Poon LLM, Chen H, Webster RG, Malik Peiris JS, Yi G (2009) Dating the emergence of pandemic influenza viruses. PNAS 106:11709–11712

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Smith RH, Hallwirth C, Westerman M, Hetherington NA, Tseng Y, Cecchini S, Virág T, Ziegler M, Rogozin IB, Koonin EV, Agbandje-McKenna M, Kotin RM, Alexander IE (2016) Germline viral “fossils” guide in silico reconstruction of a mid-Cenozoic era marsupial adeno-associated virus. Sci Rep 6:28965

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Soubrier J, Gower G, Chen K, Richards SM, Llamas B, Mitchell KJ, Ho SY, Kosintsev P, Lee MS, Baryshnikov G, Bollongino R, Bover P, Burger J, Chivall D, Crégut-Bonnoure E, Decker JE, Doronichev VB, Douka K, Fordham DA, Fontana F, Fritz C, Glimmerveen J, Golovanova LV, Groves C, Guerreschi A, Haak W, Higham T, Hofman-Kamińska E, Immel A, Julien MA, Krause J, Krotova O, Langbein F, Larson G, Rohrlach A, Scheu A, Schnabel RD, Taylor JF, Tokarska M, Tosello G, van der Plicht J, van Loenen A, Vigne JD, Wooley O, Orlando L, Kowalczyk R, Shapiro B, Cooper A (2016) Early cave art and ancient DNA record the origin of European bison. Nat Commun 7:13158

    Article  PubMed  PubMed Central  Google Scholar 

  • Soulsbury CD, White PCL (2015) Human-wildlife interactions in urban areas: a review of conflicts, benefits and opportunities. Wild Res 42:541–553

    Article  Google Scholar 

  • Spinage CA (2003) Cattle plague: a history. Springer, New York

    Book  Google Scholar 

  • Sponsel L, Headland T, Bailey R (eds) (1996) Tropical deforestation: the human dimension. Columbia University Press, New York

    Google Scholar 

  • Stern A, Yeh MT, Zinger T, Smith M, Wright C, Ling G, Nielsen R, Macadam A, Andino R (2017) The evolutionary pathway to virulence of an RNA virus. Cell 169:35–46

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Stüwe M, Nievergelt B (1991) Recovery of Alpine ibex from near extinction: the result of effective protection, captive breeding, and reintroductions. Ap Anim Behav Sci 29:379–387

    Article  Google Scholar 

  • Su C, Evans D, Cole RH, Kissinger JC, Ajioka JW, Sibley LD (2003) Recent expansion of Toxoplasma through enhanced Oral transmission. Science 299:414–416

    Article  CAS  PubMed  Google Scholar 

  • Suh A, Brosius J, Schmitz J, Kriegs JO (2013) The genome of a Mesozoic paleovirus reveals the evolution of hepatitis B viruses. Nat Commun 4:1791

    Article  PubMed  CAS  Google Scholar 

  • Tao Y, Shi M, Chommanard C, Queen K, Zhang J, Markotter W, Kuzmin IV, Holmes EC, Tong S (2017) Surveillance of bat coronaviruses in Kenya identifies relatives of human coronaviruses NL63 and 229E and their recombination history. J Virol 91(5):e01953–e01916

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Taubenberger JK, Kash JC (2010 Jun 25) Influenza virus evolution, host adaptation and pandemic formation. Cell Host Microbe 7(6):440–451

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Thomas CD (2017) Inheritors of the earth: how nature is thriving in an age of extinction. Hachette, London

    Google Scholar 

  • Thompson CS, O’Leary JP (1997) The discovery of the vector for “yellow Jack”. Am Surg 63:462–463

    CAS  PubMed  Google Scholar 

  • Thompson JC, Carvalho S, Marean CW, Alemseged Z (2019) Origins of the human predatory pattern: the transition to large-animal exploitation by early hominins. Curr Anthropol 60:1–23

    Article  Google Scholar 

  • Tiensin T, Chaitaweesub P, Songserm T, Chaisingh A, Hoonsuwan W, Buranathai C, Parakamawongsa T, Premashthira S, Amonsin A, Gilbert M, Nielen M, Stegeman A (2005) Highly pathogenic avian influenza H5N1, Thailand, 2004. Emerg Infect Dis 11:1664–1672

    Article  PubMed  PubMed Central  Google Scholar 

  • Tilman D, Cassman KG, Matson PA, Naylor R, Polasky S (2002) Agricultural sustainability and intensive production practices. Nature 418:671–677

    Article  CAS  PubMed  Google Scholar 

  • Tito RY, Macmil S, Wiley G, Najar F, Cleeland L, Qu CM, Wang P, Romagne F, Leonard S, Ruiz AJ, Reinhard K, Roe BA, Lewis CM (2008) Phylotyping and functional analysis of two ancient human microbiomes. PLoS One 3(11)

    Google Scholar 

  • Tito RY, Knights D, Metcalf J, Obregon-Tito AJ, Cleeland L, Najar F, Roe B, Reinhard K, Sobolik K, Belknap S, Foster M, Spicer P, Knight R, Lewis CM (2020) Insights from characterizing extinct human gut microbiomes. PLoS One 7(12):e51146

    Article  CAS  Google Scholar 

  • Toth N, Schick K (2007) Overview of Paleolithic anthropology. In: Henke HCW, Hardt T, Tatersall I (eds) Handbook of paleoanthropology. Springer, Berlin; Heidelberg; New York, pp 1943–1963

    Chapter  Google Scholar 

  • Trentacoste A, Nieto-Espinet A, Valenzuela-Lamas S (2018) Pre-Roman improvements to agricultural production: evidence from livestock husbandry in late prehistoric Italy. PLoS One 13(12):e0208109

    Article  PubMed  PubMed Central  Google Scholar 

  • Treves A (2008) The human dimensions of conflicts with wildlife around protected areas. In: Wildlife and society: the science of human dimensions. Island Press, Washington, DC. isbn 9781597264082

    Google Scholar 

  • Van Blerkom LM (2003) Role of viruses in human evolution. Am J Phys Anthropol Suppl 37:14–46

    Article  Google Scholar 

  • Verger JM, Grimont F, Grimont PA, Grayon M (1985) Brucella, a monospecific genus as shown by deoxyribonucleic acid hybridization. Int J Syst Evol Microbiol 35:292–295

    Google Scholar 

  • Vermeij GJ (1994) The evolutionary interaction among species: selection, escalation, and coevolution. Annual Review of Ecology and Systematics 25(1):219–236

    Article  Google Scholar 

  • Vicente J, Apollonio M, Blanco-Aguiar JA, Borowik T, Brivio F, Casaer J, Croft S, Ericsson G, Ferroglio E, Gavier-Widen GC, Jansen PA, Keuling O, Kowalczyk R, Petrovic K, Plhal R, Podgorski T, Sange M, Scandura M, Schmidt K, Smith GC, Soriguer R, Thulke H, Zanet S, Acevedo P (2019) Science-based wildlife disease response. Science 364:943–944

    Article  PubMed  Google Scholar 

  • Vigne JD (2011) The origins of animal domestication and husbandry: a major change in the history of humanity and the biosphere. C R Biol 334:171–181

    Article  PubMed  Google Scholar 

  • Vijgen L, Keyaerts E, Moës E, Thoelen I, Wollants E, Lemey P, Vandamme AM, Van Ranst M (2005) Complete genomic sequence of human coronavirus OC43: molecular clock analysis suggests a relatively recent zoonotic coronavirus transmission event. J Virol 79:1595–1604

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wang S, Wang S, Luo Y, Xiao L, Luo X, Gao S, Dou Y, Zhang H, Guo A, Meng Q, Hou J, Zhang B, Zhang S, Yang M, Meng X, Mei H, Li H, He Z, Zhu X, Tan X, Zhu XQ, Yu J, Cai J, Zhu G, Hu S, Cai X (2016) Comparative genomics reveals adaptive evolution of Asian tapeworm in switching to a new intermediate host. Nat Commun 22:12845

    Article  CAS  Google Scholar 

  • Waters AP, Higgins DG, MacCutchan TF (1991) Plasmodium falciparum appears to have arisen as a result of lateral transfer between avian and human hosts. Proc Natl Acad Sci U S A 88:3140–3144

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Webb SD (2006) The great American biotic interchange: patterns and processes 1. Ann Mo Bot Gard 93:245–257

    Article  Google Scholar 

  • Węcek K, Hartmann S, Paijmans JLA, Taron U, Xenikoudakis G, Cahill JA, Heintzman PD, Shapiro B, Baryshnikov G, Bunevich AN, Crees JJ, Dobosz R, Manaserian N, Okarma H, Tokarska M, Turvey ST, Wójcik JM, Żyła W, Szymura JM, Hofreiter M, Barlow A (2017) Complex admixture preceded and followed the extinction of wisent in the wild. Mol Biol Evol 34:598–612

    PubMed  Google Scholar 

  • Wheeler JW (2012) South American camelids-past, present and future. J Camelid Sci 5:1–24

    Google Scholar 

  • Williamson T (2002) The transformation of rural England: farming and the landscape 1700–1870. University of Exeter Press, Exeter

    Google Scholar 

  • Wolfe ND, Panosian CP, Dunavan DJ (2007) Origins of major human infectious diseases. Nature 17:279–283

    Article  CAS  Google Scholar 

  • Woodburne MO (2010) The great American biotic interchange: dispersals, tectonics, climate, sea level and holding pens. J Mamm Evol 17:245–264

    Article  PubMed  PubMed Central  Google Scholar 

  • Worobey M, Han GZ, Rambaut A (2014) A synchronized global sweep of the internal genes of modern avian influenza virus. Nature 508:2454–2257

    Article  CAS  Google Scholar 

  • Wrangham RW, Jones JH, Laden G, Pilbeam D, Conklin-Brittain N (1999) The raw and the stolen. Cooking and the ecology of human origins. Curr Anthropol 40:567–594

    Article  CAS  PubMed  Google Scholar 

  • Yeloff D, van Geel B (2007) Special paper: abandonment of farmland and vegetation succession following the Eurasian plague pandemic of AD 1347-52. J Biogeogr 34:575–582

    Article  Google Scholar 

  • Zarlenga DS, Rosenthal BM, La Rosa G, Pozio E, Hoberg EP (2006) Post-Miocene expansion, colonization, and host switching drove speciation among extant nematodes of the archaic genus Trichinella. PNAS 103:7354–7359

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zeder A (2012) In: Gepts P, Famula TR, Bettinger RL et al (eds) Pathways to animal domestication melinda biodiversity in agriculture: domestication, evolution, and sustainability. Cambridge University Press, Cambridge

    Google Scholar 

  • Zeder MA (2015) Core questions in domestication research. Proc Natl Acad Sci U S A 112:3191–3198

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhou NN, Senne DA, Landgraf JS, Swenson SL, Erickson G, Rossow K, Liu L, Yoon KJ, Krauss S, Webster RG (1999) Genetic Reassortment of avian, swine, and human influenza a viruses in American pigs. J Virol 73:8851–8856

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zuckerman M, Harper K, Barrett R, Armelagos G (2014) The evolution of disease: anthropological perspectives on epidemiologic transitions. Special issue: epidemiological transitions – beyond Omran’s theory. The evolution of disease: anthropological perspectives on epidemiologic transitions. Glob Health Action 7:23303

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Joaquín Vicente .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Vicente, J., Montoro, V., Vercauteren, K.C. (2021). Natural and Historical Overview of the Animal Wildlife-Livestock Interface. In: Vicente, J., Vercauteren, K.C., Gortázar, C. (eds) Diseases at the Wildlife - Livestock Interface. Wildlife Research Monographs, vol 3. Springer, Cham. https://doi.org/10.1007/978-3-030-65365-1_2

Download citation

Publish with us

Policies and ethics