Skip to main content

Quantifying Transmission Between Wild and Domestic Populations

  • Chapter
  • First Online:
Diseases at the Wildlife - Livestock Interface

Part of the book series: Wildlife Research Monographs ((WIREMO,volume 3))

Abstract

Disease modeling at the wildlife–livestock interface aims to predict disease transmission, evaluates spill-over risk and control strategies, and quantify the consequences for animal health and conservation, among other objectives. Different types of approaches have been extensively used in epidemiology to evaluate pathogen transmission among individuals in one or more populations. However, considering wildlife–livestock or wildlife–livestock–human host groups is less common because of the complexity of gathering detailed/quality data on wildlife and livestock (and human) populations simultaneously as well as other methodological challenges. This chapter aims to provide a brief overview of the main modeling approaches available to quantify the multi-host disease transmission at the wildlife–livestock interface, illustrated with specific case studies. We focus on what we have classified into three groups of approaches: (1) correlative approaches; (2) mechanistic approaches; and (3) molecular approaches. All those approaches can be used alone or in combination to study disease transmission at the wildlife–livestock interface across different spatio/temporal scales. The most appropriate method and scales to consider will depend on feasible/available data streams and objectives (e.g., designing surveillance at a national level or proposing protective measures regarding farms). “Correlative approaches” (data-driven) make use of data obtained through observational (genetic data, surveillance) or experimental (sentinel studies, intervention studies) studies for the purpose of estimation (i.e., calculating unknown parameters) or prediction (approximating outcomes for unseen data or future time periods). However, we usually need to combine data into knowledge-driven or mechanistic models to obtain a more holistic understanding of the magnitude and dynamics of a problem (to evaluate the risk of disease introduction and/or spread as well as to quantify the magnitude and economic impact of an epidemic at the wildlife–livestock interface. Finally, molecular approaches are useful for identifying the source of transmission of infections (i.e., contact tracing at the wildlife–livestock interface) through analyzing genetic relationships in a set of samples from different species and also allow inference about the spatial and temporal dynamics of multi-host diseases. Underreporting of disease in livestock may occur and for several reasons, but it is usually a bigger problem in the wildlife side of the interface. In addition, wildlife sources of data are usually skewed to nonrandom samples due to convenience, or only based on detected cases. Wildlife surveillance may be too sparse and limited to particular diseases and hosts, and the accuracy of diagnostic tests may present some concerns since they are often only validated for livestock. All this hinders estimation of disease dynamics in the real population affected. Today, there is still a significant need to increase our knowledge about how some wild populations are distributed and structured (also social structure and movements and interactions with other species) to infer disease spread. Models that explicitly include the spatial structure and contact networks of the population have become increasingly used. However, estimating contacts is challenging and usually only possible at small scales, and factors influencing interactions may vary from one area to another. Nevertheless, we believe that technological advances and the expansion of interdisciplinary teams with expertise in the wildlife, livestock, and human side of the interface will allow better characterization of disease transmission at the interface using these modeling approaches, thus providing better prevention and control of emerging infectious diseases locally and globally.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    Frequentist approaches, from bivariate analysis to multivariate and multi-level models, have been extensively used to assess risk factors contributing to disease transmission at the wildlife-livestock interface. More recently, Bayesian analysis has been also proposed as a convenient and, many times, more robust and flexible framework.

References

  • Abdrakhmanov SK et al (2016) Revealing spatio-temporal patterns of rabies spread among various categories of animals in the Republic of Kazakhstan, 2010–2013. Geospat Health 11(2):199–205

    Article  Google Scholar 

  • Achenbach JE, Bowen RA (2011) Transmission of avian influenza a viruses among species in an artificial barnyard. PLoS One 6(3):e17643

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Alexander KA et al (2012) Modeling of wildlife-associated zoonoses: applications and caveats. Vector Borne Zoonotic Dis 12(12):1005–1018

    Article  PubMed  PubMed Central  Google Scholar 

  • Alkhamis MA et al (2018) Phylodynamics and evolutionary epidemiology of African swine fever P72-CVR genes in Eurasia and Africa. PLoS One 13(2):1–18

    Article  CAS  Google Scholar 

  • Allen LJS et al (2012) Mathematical modeling of viral zoonoses in wildlife. Nat Resour Model 25:5–51

    Article  CAS  PubMed  Google Scholar 

  • Arrioja A (2008) Handbook on import risk analysis for animals and animal products: volume 1. Introduction and qualitative risk analysis. Can Vet J 49(10):1036

    PubMed Central  Google Scholar 

  • Barros M et al (2018) Toxoplasma gondii infection in wild mustelids and cats across an urban-rural gradient. PLoS One 13(6):1–16

    Article  CAS  Google Scholar 

  • Beauvais W et al (2019) Rapidly assessing the risks of infectious diseases to wildlife species. R Soc Open Sci 6(1):181043

    Article  PubMed  PubMed Central  Google Scholar 

  • Belkhiria J, Alkhamis MA, Martínez-López B (2016) Application of species distribution modeling for avian influenza surveillance in the United States considering the North America migratory flyways. Sci Rep 6:33161. https://doi.org/10.1038/srep33161

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Beltran-Alcrudo D, Falco JR, Raizman E, Dietze K (2019) Transboundary spread of pig diseases: the role of international trade and travel. BMC Vet Res 15(1):1–14

    Article  Google Scholar 

  • Berrian AM et al (2016) One health profile of a community at the wildlife-domestic animal interface, Mpumalanga, South Africa. Prev Vet Med 130:119–128

    Article  PubMed  Google Scholar 

  • Bouchez-Zacria M, Courcoul A, Durand B (2018) The distribution of bovine tuberculosis in cattle farms is linked to cattle trade and badger-mediated contact networks in South-Western France, 2007–2015. Front Vet Sci 5(July):1–12

    Google Scholar 

  • Bouwstra RJ et al (2015) Phylogenetic analysis of highly pathogenic avian influenza a (H5n8) virus outbreak strains provides evidence for four separate introductions and one between-poultry farm transmission in the Netherlands, November 2014. Euro Surveill 20(26):1–12

    Article  Google Scholar 

  • Brand SPC, Keeling MJ (2017) The impact of temperature changes on vector-borne disease transmission: Culicoides midges and bluetongue virus. J R Soc Interface 14(128):20160481

    Article  PubMed  PubMed Central  Google Scholar 

  • Broughan JM et al (2016) Review article a review of risk factors for bovine tuberculosis infection in cattle in the UK and Ireland. Epidemiol Infect 144(14):2899–2926

    Article  CAS  PubMed  Google Scholar 

  • Bui CM, Lauren G, Raina MacIntyre C, Sarkar S (2017) Influenza A H5N1 and H7N9 in China: a spatial risk analysis. PLoS One 12(4):e0176903

    Article  PubMed  PubMed Central  Google Scholar 

  • Byrne AW, Allen AR, O’Brien DJ, Miller MA (2019) Editorial: bovine tuberculosis-international perspectives on epidemiology and management. Front Vet Sci 6:202. https://doi.org/10.3389/fvets.2019.00202

    Article  PubMed  PubMed Central  Google Scholar 

  • Caron A et al (2010) Estimating dynamic risk factors for pathogen transmission using community-level bird census data at the wildlife/domestic interface. Ecol Soc 15(3):25

    Article  Google Scholar 

  • Chanda MM et al (2019) Livestock host composition rather than land use or climate explains spatial patterns in bluetongue disease in South India. Sci Rep 9(1):1–15

    Article  CAS  Google Scholar 

  • Ciss M et al (2019) Ecological niche modelling to estimate the distribution of Culicoides, potential vectors of bluetongue virus in Senegal. BMC Ecol 19(1):1–12

    Article  Google Scholar 

  • Cissé B, El Yacoubi S, Gourbiere S (2016) A cellular automaton model for the transmission of Chagas disease in heterogeneous landscape and host community. Appl Math Model 40(2):782–794

    Article  Google Scholar 

  • Claes G et al (2014) An experimental model to analyse the risk of introduction of a duck-originated H5 low-pathogenic avian influenza virus in poultry through close contact and contaminative transmission. Epidemiol Infect 142(9):1836–1847

    Article  CAS  PubMed  Google Scholar 

  • Clifford DL et al (2009) Assessing disease risk at the wildlife-livestock interface: a study of Sierra Nevada bighorn sheep. Biol Conserv 142(11):2559–2568

    Article  Google Scholar 

  • Colman E, Holme P, Sayama H, Gershenson C (2019) Efficient sentinel surveillance strategies for preventing epidemics on networks. PLoS Comput Biol 15(11):1–19

    Article  CAS  Google Scholar 

  • Croft S, Aegerter JN, Massei G, Smith GC (2019) The risk of foot-and-mouth disease becoming endemic in a wildlife host is driven by spatial extent rather than density. PLoS One 14(6):1–16

    Article  CAS  Google Scholar 

  • Cross PC, Prosser DJ, Ramey AM, Hanks EM, Pepin KM (2019) Confronting models with data: the challenges of estimating disease spill-over. Philos Trans R Soc B 374:20180435. https://doi.org/10.1098/rstb.2018.0435

  • Cuéllar AC et al (2018) Spatial and temporal variation in the abundance of Culicoides biting midges (Diptera: Ceratopogonidae) in nine European countries. Parasit Vectors 11(1):1–18

    Article  CAS  Google Scholar 

  • Cui J et al (2017) Phylogeny, pathogenicity, and transmission of H5N1 avian influenza viruses in chickens. Front Cell Infect Microbiol 7(Jul):1–15

    Google Scholar 

  • Dellicour S et al (2018) Phylodynamic assessment of intervention strategies for the West African Ebola virus outbreak. Nat Commun 9(1):2222

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Fagundes de Carvalho LM, Santos LBL, Faria NR, de Castro Silveira W (2013) Phylogeography of foot-and-mouth disease virus serotype O in Ecuador. Infect Genet Evol 13(1):76–88

    Article  Google Scholar 

  • Ferdousi T, Moon SA, Self A, Scoglio C (2019) Generation of swine movement network and analysis of efficient mitigation strategies for African swine fever virus. PLoS One 14(12):1–16

    Article  CAS  Google Scholar 

  • Friedman N, Goldszmidt M, Wyner A (1999) Data analysis with Bayesian networks: a bootstrap approach UAI’99. Proceedings of the fifteenth conference on uncertainty in artificial intelligence, Morgan Kaufmann

    Google Scholar 

  • Frost SD et al (2015) Eight challenges in phylodynamic inference. Epidemics 10:88–92

    Google Scholar 

  • Fulford GR, Roberts MG, Heesterbeek JAP (2002) The metapopulation dynamics of an infectious disease: tuberculosis in possums. Theor Popul Biol 61(1):15–29

    Article  CAS  PubMed  Google Scholar 

  • Gao X, Qin H, Xiao J, Wang H (2017) Meteorological conditions and land cover as predictors for the prevalence of Bluetongue virus in the inner Mongolia Autonomous Region of Mainland China. Prev Vet Med 138:88–93

    Article  PubMed  Google Scholar 

  • García-Bocanegra I et al (2011) Role of wild ruminants in the epidemiology of bluetongue virus serotypes 1, 4 and 8 in Spain. Vet Res 42(1):88–94

    Article  PubMed  PubMed Central  Google Scholar 

  • Grenfell BT et al (2004) Unifying the epidemiological and evolutionary dynamics of pathogens. Science 303(5656):327–332

    Article  CAS  PubMed  Google Scholar 

  • Griffith D (2010) Spatial autocorrelation and spatial filtering. Springer, Berlin

    Google Scholar 

  • Haase M et al (2010) Possible sources and spreading routes of highly pathogenic avian influenza virus subtype H5N1 infections in poultry and wild birds in Central Europe in 2007 inferred through likelihood analyses. Infect Genet Evol 10(7):1075–1084

    Article  PubMed  Google Scholar 

  • Halasa T et al (2019) Simulation of transmission and persistence of African swine fever in wild boar in Denmark. Prev Vet Med 167(September 2018):68–79

    Article  PubMed  Google Scholar 

  • Halliday JE, Meredith AL, Knobel DL, Shaw DJ, Bronsvoort BM, Cleaveland S (2007) A framework for evaluating animals as sentinels for infectious disease surveillance. J R Soc Interface 4(16):973–984. https://doi.org/10.1098/rsif.2007.0237

    Article  PubMed  PubMed Central  Google Scholar 

  • Halvorson AD et al (1983) Epizootiology of avian influenza: simultaneous monitoring of sentinel ducks and turkeys in Minnesota. Avian Dis 27(1):77–85

    Article  CAS  PubMed  Google Scholar 

  • Halvorson DA, Kelleher CJ, Senne DA (1985) Epizootiology of avian influenza: effect of season on incidence in sentinel ducks and domestic turkeys in Minnesota. Appl Environ Microbiol 49(4):914–919

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hartemink N et al (2015) Towards a resource-based habitat approach for spatial modelling of vector-borne disease risks. Biol Rev 90(4):1151–1162

    Article  PubMed  Google Scholar 

  • Hassell JM, Begon M, Ward MJ, Fèvre EM (2017) Urbanization and disease emergence: dynamics at the wildlife–livestock–human interface. Trends Ecol Evol 32(1):55–67

    Article  PubMed  PubMed Central  Google Scholar 

  • Henning J et al (2011) Highly pathogenic avian influenza (H5N1) in ducks and in-contact chickens in backyard and smallholder commercial duck farms in Viet Nam. Prev Vet Med 101(3–4):229–240

    Article  PubMed  Google Scholar 

  • Humblet MF, Boschiroli ML, Saegerman C (2009) Classification of worldwide bovine tuberculosis risk factors in cattle: a stratified approach. Vet Res 40(5):50

    Article  PubMed  PubMed Central  Google Scholar 

  • Huyvaert KP et al (2018) Challenges and opportunities developing mathematical models of shared pathogens of domestic and wild animals. Vet Sci 5(4):92

    Article  PubMed Central  Google Scholar 

  • Iglesias I et al (2017) Spatio-temporal analysis of African swine fever in Sardinia (2012–2014): trends in domestic pigs and wild boar. Transbound Emerg Dis 64(2):656–662

    Article  CAS  PubMed  Google Scholar 

  • Jacquot M et al (2017) Bluetongue virus spread in Europe is a consequence of climatic, landscape and vertebrate host factors as revealed by phylogeographic inference. Proc R Soc B Biol Sci 284(1864):20170919

    Article  Google Scholar 

  • Jenness SM, Goodreau SM, Morris M (2018) EpiModel: an R package for mathematical modeling of infectious disease over networks. J Stat Softw 84:8. https://doi.org/10.18637/jss.v084.i08

    Article  PubMed  PubMed Central  Google Scholar 

  • Jones AE et al (2019) Bluetongue risk under future climates. Nat Clim Chang 9(2):153–157

    Article  Google Scholar 

  • Jurado C et al (2019) Risk of African swine fever virus introduction into the United States through smuggling of pork in air passenger luggage. Sci Rep 9(1):1–7

    Article  CAS  Google Scholar 

  • Knight-Jones TJD et al (2014) Risk assessment and cost-effectiveness of animal health certification methods for livestock export in Somalia. Prev Vet Med 113(4):469–483

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Koivisto M, Sood K (2004) Exact Bayesian structure discovery in Bayesian networks. J Mach Learn Res 5:549–573

    Google Scholar 

  • Kramer-Schadt S et al (2013) The importance of correcting for sampling bias in MaxEnt species distribution models. Divers Distrib 19(11):1366–1379

    Article  Google Scholar 

  • Kukielka E et al (2013) Spatial and temporal interactions between livestock and wildlife in South Central Spain assessed by camera traps. Prev Vet Med 112(3–4):213–221

    Article  CAS  PubMed  Google Scholar 

  • Kukielka EA et al (2016) Wild and domestic pig interactions at the wildlife-livestock interface of Murchison falls National Park, Uganda, and the potential association with African swine fever outbreaks. Front Vet Sci 3(APR):31

    PubMed  PubMed Central  Google Scholar 

  • Kulldorff M (1997) A spatial scan statistic. Commun Stat 26:1481–1496

    Article  Google Scholar 

  • Kulldorff M, Information Management Services, Inc (2009) SaTScanTM v8.0: software for the spatial and space-time scan statistics. http://www.satscan.org/

  • Kulldorff M, Heffernan R, Hartman J, Assunção RM, Mostashari F (2005) A space-time permutation scan statistic for the early detection of disease outbreaks. PLoS Med 2:216–224

    Article  Google Scholar 

  • La Sala LF et al (2019) Spatial modelling for low pathogenicity avian influenza virus at the interface of wild birds and backyard poultry. Transbound Emerg Dis 66(4):1493–1505

    PubMed  Google Scholar 

  • LaHue NP, Baños JV, Acevedo P, Gortázar C, Martínez-López B (2016) Spatially explicit modeling of animal tuberculosis at the wildlife-livestock interface in Ciudad Real province, Spain. Prev Vet Med 128:101–111

    Article  PubMed  Google Scholar 

  • Lam PO et al (2016) Predictors of influenza among older adults in the emergency department. BMC Infect Dis 16(1):1–9

    Article  Google Scholar 

  • Larison B et al (2014) Spill-over of PH1N1 to swine in Cameroon: an investigation of risk factors. BMC Vet Res 10(1):1–8

    Article  Google Scholar 

  • Lei F, Shi W (2012) Prospective of genomics in revealing transmission, reassortment and evolution of wildlife-borne avian influenza A (H5N1) viruses. Curr Genomics 12(7):466–474

    Article  Google Scholar 

  • Leopold BD (2019) Theory of wildlife population ecology. Waveland Press, Long Grove, IL

    Google Scholar 

  • Liaw A, Wiener M (2002) Classification and regression by random forest. R News 2(3):18–22

    Google Scholar 

  • Lloyd-Smith JO, Schreiber SJ, Kopp PE, Getz WM (2005) Superspreading and the effect of individual variation on disease emergence. Nature 438(7066):355–359

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lloyd-Smith JO, George D, Pepin KM, Pitzer VE, Pulliam JRC, Dobson AP, Hudson PJ, Grenfell BT (2009) Epidemic dynamics at the human-animal interface. Science 326:1362–1367

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lu Y et al (2019) Risk analysis of African swine fever in Poland based on spatio-temporal pattern and Latin hypercube sampling, 2014–2017. BMC Vet Res 15(1):1–12

    Article  CAS  Google Scholar 

  • Manlove KR, Sampson LM, Borremans B, Cassirer EF, Miller RS, Pepin KM, Besser TE, Cross PC (2019) Epidemic growth rates and host movement patterns shape management performance for pathogen spill-over at the wildlife-livestock interface. Philos Trans R Soc B 374:20180343

    Article  Google Scholar 

  • Marcos A, Perez AM (2019) Quantitative risk assessment of foot-and-mouth disease (FMD) virus introduction into the FMD-free zone without vaccination of Argentina through legal and illegal trade of bone-in beef and unvaccinated susceptible species. Front Vet Sci 6(Mar):1–12

    Google Scholar 

  • Martin V et al (2011) Spatial distribution and risk factors of highly pathogenic avian influenza (HPAI) H5N1 in China. PLoS Pathog 7(3):e1001308

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Martínez-López B, Perez AM, De la Torre A, Rodriguez JM (2008) Quantitative risk assessment of foot-and-mouth disease introduction into Spain via importation of live animals. Prev Vet Med 86(1–2):43–56. https://doi.org/10.1016/j.prevetmed.2008.03.003

    Article  PubMed  Google Scholar 

  • Martínez-López B, Perez AM, Sánchez-Vizcaíno JM (2009a) A stochastic model to quantify the risk of introduction of classical swine fever virus through import of domestic and wild boars. Epidemiol Infect 137(10):1505–1515

    Article  PubMed  Google Scholar 

  • Martínez-López B, Perez AM, Sánchez-Vizcaíno JM (2009b) Social network analysis. Review of general concepts and use in preventive veterinary medicine. Transbound Emerg Dis 56(4):109–120. https://doi.org/10.1111/j.1865-1682.2009.01073.x

    Article  PubMed  Google Scholar 

  • Martínez-López B, Perez AM, Sánchez-Vizcaíno JM (2010) A simulation model for the potential spread of foot-and-mouth disease in the Castile and Leon region of Spain. Prev Vet Med 96(1–2):19–29

    Article  PubMed  Google Scholar 

  • Martínez-López B, Ivorra B, Ramos AM, Sánchez-Vizcaíno JM (2011) A novel spatial and stochastic model to evaluate the within- and between-farm transmission of classical swine fever virus. I. General concepts and description of the model. Vet Microbiol 147(3–4):300–309

    Article  PubMed  Google Scholar 

  • Martínez-López B, Barasona JA, Gortázar C, Rodríguez-Prieto V, Sánchez-Vizcaíno JM, Vicente J (2014) Farm-level risk factors for the occurrence, new infection or persistence of tuberculosis in cattle herds from South-Central Spain. Prev Vet Med 116(3):268–278. https://doi.org/10.1016/j.prevetmed.2013.11.002

    Article  PubMed  Google Scholar 

  • Mayfield HJ, Smith CS, Lowry JH et al (2018) Predictive risk mapping of an environmentally-driven infectious disease using spatial Bayesian networks: a case study of leptospirosis in Fiji. PLoS Negl Trop Dis 12(10):e0006857. https://doi.org/10.1371/journal.pntd.0006857

    Article  PubMed  PubMed Central  Google Scholar 

  • Merow C, Smith MJ, Silander JA (2013) A practical guide to MaxEnt for modeling species’ distributions: what it does, and why inputs and settings matter. Ecography 36(10):1058–1069

    Article  Google Scholar 

  • Miguel E et al (2014) Characterising African tick communities at a wild-domestic interface using repeated sampling protocols and models. Acta Trop 138:5–14

    Article  PubMed  Google Scholar 

  • Miller RS, Pepin KM (2019) Prospects for improving management of animal disease introductions using disease-dynamic models. J Anim Sci 97(6):2291–2307

    Article  PubMed  PubMed Central  Google Scholar 

  • Miller RS, Farnsworth ML, Malmberg JL (2013) Diseases at the livestock-wildlife interface: status, challenges, and opportunities in the United States. Prev Vet Med 110(2):119–132

    Article  PubMed  Google Scholar 

  • Miller RS et al (2017) Cross-species transmission potential between wild pigs, livestock, poultry, wildlife, and humans: implications for disease risk management in North America. Sci Rep 7(1):1–14

    Article  CAS  Google Scholar 

  • Monne I et al (2011) A distinct CDV genotype causing a major epidemic in alpine wildlife. Vet Microbiol 150(1–2):63–69

    Article  PubMed  Google Scholar 

  • Mulatti A et al (2017) H7N7 highly pathogenic avian influenza in poultry farms in Italy in 2016 published by: American Association of Avian Pathologists case report. Avian Dis 61(2):261–266

    Article  CAS  PubMed  Google Scholar 

  • Mur L, Martínez-López B, Sánchez-Vizcaíno JM (2012) Risk of African swine fever introduction into the European Union through transport-associated routes: returning trucks and waste from international ships and planes. BMC Vet Res 8:149

    Article  PubMed  PubMed Central  Google Scholar 

  • Mur L et al (2018) Understanding African swine fever infection dynamics in Sardinia using a spatially explicit transmission model in domestic pig farms. Transbound Emerg Dis 65(1):123–134

    Article  CAS  PubMed  Google Scholar 

  • Palmer MV et al (2012) Mycobacterium bovis: a model pathogen at the interface of livestock, wildlife, and humans. Vet Med Int 2012:236205

    Article  PubMed  PubMed Central  Google Scholar 

  • Pepin KM, VerCauteren KC (2016) Disease-emergence dynamics and control in a socially-structured wildlife species. Sci Rep 6:25150

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Pepin KM, Lass S, Pulliam JRC, Read AF, Lloyd-Smith JO (2010) Identifying genetic markers of adaptation for surveillance of viral host jumps. Nat Rev Microbiol 8:802–813

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Pepin KM, Spackman E, Brown JD, Pabilonia KL, Garber LP, Weaver JT, Kennedy DA, Patyk KA, Huyvaert KP, Miller RS et al (2014) Using quantitative disease dynamics as a tool for guiding response to avian influenza in poultry in the United States of America. Prev Vet Med 113:376–397

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Pepin KM, Hopken MW, Shriner SA, Spackman E, Abdo Z, Parrish C, Riley S, Lloyd-Smith JO, Piaggio AJ (2019) Improving risk assessment of the emergence of novel influenza A viruses by incorporating environmental surveillance. Philos Trans R Soc B 374:20180346. https://doi.org/10.1098/rstb.2018.0346

    Article  CAS  Google Scholar 

  • Pepin KM, Golnar AJ, Abdo Z, Podgórski T (2020) Ecological drivers of African swine fever virus persistence in wild boar populations: insight for control. Ecol Evol 10:1–47

    Article  Google Scholar 

  • Phillips S, Anderson RP, Schapire RE (2006) Maximum entropy modeling of species geographic distributions. Ecol Model 190:231–259

    Article  Google Scholar 

  • Plowright RK, Parrish CR, McCallum H, Hudson PJ, Ko AI, Graham AL, Lloyd-Smith JO (2017) Pathways to zoonotic spill-over. Nat Rev Microbiol 15:502–510

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ramey AM, Reeves AB, TeSlaa JL, Nashold S, Donnelly T, Bahl J, Hall JS (2016) Evidence for common ancestry among viruses isolated from wild birds in Beringia and highly pathogenic intercontinental reassortant H5N1 and H5N2 influenza A viruses. Infect Genet Evol 40:176–185. https://doi.org/10.1016/j.meegid.2016.02.035

    Article  PubMed  Google Scholar 

  • Ramey AM et al (2018) Genetic evidence supports sporadic and independent introductions of subtype H5 low pathogenic avian influenza A viruses from wild birds to domestic poultry in North America. J Virol 92:1–16. https://doi.org/10.1128/JVI.00913-18

    Article  Google Scholar 

  • Ridgeway G (2005) Generalized boosted models: a guide to the gbm package. CiteSeerX. Available at: http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.151.4024

  • Rivière J, Le Strat Y, Hendrikx P, Dufour B (2017) Cost-effectiveness evaluation of bovine tuberculosis surveillance in wildlife in France (Sylvatub system) using scenario trees. PLoS One 12(8):e0183126

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Robins G, Pattison P, Kalish Y, Lusher D (2007) An introduction to exponential random graph (P*) models for social networks. Soc Networks 29(2):173–191

    Article  Google Scholar 

  • Robinson R (1993) Cost-utility analysis. BMJ 307(6908):859–862

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Rodríguez-Prieto V et al (2012) A Bayesian approach to study the risk variables for tuberculosis occurrence in domestic and wild ungulates in South Central Spain. BMC Vet Res 8:148

    Article  PubMed  PubMed Central  Google Scholar 

  • Root JJ et al (2017) Transmission of H6N2 wild bird-origin influenza A virus among multiple bird species in a stacked-cage setting. Arch Virol 162(9):2617–2624

    Article  CAS  PubMed  Google Scholar 

  • Ruiz-Fons F, Sánchez-Matamoros A, Gortázar C, Sánchez-Vizcaíno JM (2014) The role of wildlife in bluetongue virus maintenance in Europe: lessons learned after the natural infection in Spain. Virus Res 182:50–58

    Article  CAS  PubMed  Google Scholar 

  • Saegerman C et al (2016) Clinical sentinel surveillance of equine West Nile fever, Spain. Transbound Emerg Dis 63(2):184–193

    Article  CAS  PubMed  Google Scholar 

  • Santos N et al (2018) Spatial analysis of wildlife tuberculosis based on a serologic survey using dried blood spots, Portugal. Emerg Infect Dis 24(12):2169–2175

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Schmidt JP et al (2019) Ecological indicators of mammal exposure to ebolavirus. Philos Trans R Soc B 374(1782):20180337

    Article  Google Scholar 

  • Shwiff SA et al (2016) A benefit-cost analysis decision framework for mitigation of disease transmission at the wildlife-livestock interface. Hum Wildl Interact 10(1):91–102

    Google Scholar 

  • Siembieda JL, Kock RA, McCracken TA, Newman SH (2011) The role of wildlife in transboundary animal diseases. Anim Health Res Rev 12(1):95–111

    Article  CAS  PubMed  Google Scholar 

  • Sok J et al (2014) Expected utility of voluntary vaccination in the middle of an emergent bluetongue virus serotype 8 epidemic: a decision analysis parameterized for Dutch circumstances. Prev Vet Med 115(3–4):75–87

    Article  CAS  PubMed  Google Scholar 

  • Sokolow SH, Nova N, Pepin KM, Peel AJ, Manlove K, Cross PC, Becker DJ, Plowright RK, Pulliam JRC, McCallum H, De Leo GA (2018) Ecological interventions to prevent and manage zoonotic pathogen spill-over. Philos Trans R Soc B 374:20180342

    Article  Google Scholar 

  • Stryhn H, Christensen J (2014) The analysis-hierarchical models: past, present and future. Prev Vet Med 113(3):304–312

    Article  PubMed  Google Scholar 

  • Tango T, Takahashi K (2012) A flexible spatial scan statistic with a restricted likelihood ratio for detecting disease clusters. Stat Med 31(30):4207–4218

    Article  PubMed  Google Scholar 

  • Taylor RA et al (2019) Predicting spread and effective control measures for African swine fever—should we blame the boars? bioRxiv 2019:654160

    Google Scholar 

  • USDA (2019) Qualitative assessment of the likelihood of African swine fever virus entry to the United States: entry assessment. https://www.aphis.usda.gov/animal_health/downloads/animal_diseases/swine/asf-entry.pdf. Accessed 02 May 2021

  • VanderWaal KL, Atwill ER, Isbell LA, McCowan B (2014) Quantifying microbe transmission networks for wild and domestic ungulates in Kenya. Biol Conserv 169:136–146

    Article  Google Scholar 

  • Volz EM, Siveroni I (2018) Bayesian phylodynamic inference with complex models. PLoS Comput Biol 14(11):1–15

    Article  CAS  Google Scholar 

  • Volz EM, Koelle K, Bedford T (2013) Viral phylodynamics. PLoS Comput Biol 9(3):e1002947

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Walsh MG, Mor SM, Hossain S (2018) The wildlife-livestock interface modulates anthrax suitability in India. bioRxiv. https://doi.org/10.1101/419465

  • Ward MP, Garner MG, Cowled BD (2015) Modelling foot-and-mouth disease transmission in a wild pig-domestic cattle ecosystem. Aust Vet J 93(1–2):4–12. https://doi.org/10.1111/avj.12278

    Article  CAS  PubMed  Google Scholar 

  • Wen B, Teng Z, Liu W (2019) Threshold dynamics in a periodic three-patch rift valley fever virus transmission model. Complexity 2019:Article ID 7896946

    Article  Google Scholar 

  • Wilber M, Pepin KM, Campa H III, Hyngstrom S, Lavelle M, Xifara T, VerCauteren KC, Webb CT (2019) Modeling multi-species and multi-mode contact networks: implications for persistence of bovine tuberculosis at the wildlife-livestock interface. J Appl Ecol 56(6):1471–1481

    Article  Google Scholar 

  • Wobeser G (2002) New and emerging diseases—the wildlife interface. Can Vet J 43(10):798

    PubMed  PubMed Central  Google Scholar 

  • Zhou S et al (2016) Genetic evidence for avian influenza H5N1 viral transmission along the Black Sea-Mediterranean Flyway. J Gen Virol 97(9):2129–2134

    Article  CAS  PubMed  Google Scholar 

  • Zinsstag J et al (2005) A model of animal-human brucellosis transmission in Mongolia. Prev Vet Med 69(1–2):77–95

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Beatriz Martínez-López .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Martínez-López, B., Díaz-Cao, J.M., Pepin, K.M. (2021). Quantifying Transmission Between Wild and Domestic Populations. In: Vicente, J., Vercauteren, K.C., Gortázar, C. (eds) Diseases at the Wildlife - Livestock Interface. Wildlife Research Monographs, vol 3. Springer, Cham. https://doi.org/10.1007/978-3-030-65365-1_12

Download citation

Publish with us

Policies and ethics