Skip to main content

Collecting Data to Assess the Interactions Between Livestock and Wildlife

  • Chapter
  • First Online:
Diseases at the Wildlife - Livestock Interface

Part of the book series: Wildlife Research Monographs ((WIREMO,volume 3))

Abstract

The need to identify interactions with the potential for pathogen transmission among the community of hosts at the wildlife–livestock interface has led to the development of multiple approaches in the field of epidemiology. Methodologies can be broadly classified into those that allow the quantification of interactions and those whose objective is to detect the existence of potential interactions at the interface. Regardless of their capacity to quantify or detect this potential, it is possible to study both direct (i.e., the simultaneous presence of two individuals at a certain point) and indirect (i.e., the sequential presence of two individuals at a certain point) interactions. Although each methodology has its specific pros and cons, when individuals are not marked, the main limitations are the difficulty involved in assessing the spatio-temporal resolution of events and, obviously, the role played by the individuals involved, the nature of the interaction, and the associated level of epidemiological risk. Furthermore, marking a limited number of individuals with different devices (e.g. GPS, proximity loggers) normally implies the possibility of low representativeness of the target population, especially when high variability exists in behaviour and connectedness of individual animals. The present chapter reviews the methodologies most commonly used to collect the data employed to assess interactions at the wildlife–livestock interface, namely, the direct observation of animals, epidemiological sampling, epidemiological questionnaires, camera traps, GPS technology, and proximity loggers. We also present the complementary nature of different methodologies by means of a specific case study of animal tuberculosis in the Iberian Peninsula. The methods selected have to adapt to the objectives of the study, logistic constraints, target host species and pathogens, and the routes of transmission at the wildlife/livestock interface.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  • Abu Samra N, Jori F, Xiao L, Rikhotso O, Thompson PN (2013) Molecular characterization of Cryptosporidium species at the wildlife/livestock interface of the Kruger National Park, South Africa. Comp Immunol Microbiol Infect Dis 36(3):295–302

    Article  PubMed  Google Scholar 

  • Acevedo P, Ruiz-Fons F, Vicente J, Reyes-García AR, Alzaga V, Gortázar C (2008) Estimating red deer abundance in a wide range of management situations in Mediterranean habitats. J Zool 276(1):37–47

    Article  Google Scholar 

  • Anderson K, Gaston KJ (2013) Lightweight unmanned aerial vehicles will revolutionize spatial ecology. Front Ecol Environ 11(3):138–146

    Article  Google Scholar 

  • Anderson DR, Laake JL, Crain BR, Burnham KP (1979) Guidelines for line transect sampling of biological populations. J Wildl Manag:70–78

    Google Scholar 

  • Aranaz A, De Juan L, Montero N, Sánchez C, Galka M, Delso C, Álvarez J, Romero B, Bezos J, Vela AI, Briones V, Mateos A, Domínguez L (2004) Bovine tuberculosis (Mycobacterium bovis) in wildlife in Spain. J Clin Microbiol 42(6):2602–2608

    Article  PubMed  PubMed Central  Google Scholar 

  • Bajaj R, Ranaweera SL, Agrawal DP (2002) GPS: location-tracking technology. Computer 4:92–94

    Article  Google Scholar 

  • Barasona JA, VerCauteren KC, Saklou N, Gortazar C, Vicente J (2013) Effectiveness of cattle operated bump gates and exclusion fences in preventing ungulate multi-host sanitary interaction. Prev Vet Med 111(1–2):42–50

    Article  CAS  PubMed  Google Scholar 

  • Barasona JA, Mulero-Pázmány M, Acevedo P, Negro JJ, Torres MJ, Gortázar C, Vicente J (2014a) Unmanned aircraft systems for studying spatial abundance of ungulates: relevance to spatial epidemiology. PLoS One 9(12):e115608

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Barasona JA, Latham MC, Acevedo P, Armenteros JA, Latham ADM, Gortázar C, Carro F, Soriguer RC, Vicente J (2014b) Spatiotemporal interactions between wild boar and cattle: implications for cross-species disease transmission. Vet Res 45(1):122

    Article  PubMed  PubMed Central  Google Scholar 

  • Boffetta P (2000) Molecular epidemiology. J Intern Med 249(S741):129–136

    Article  Google Scholar 

  • Böhm M, Hutchings MR, White PC (2009) Contact networks in a wildlife-livestock host community: identifying high-risk individuals in the transmission of bovine TB among badgers and cattle. PLoS One 4(4):e5016

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Boyland NK, James R, Mlynski DT, Madden JR, Croft DP (2013) Spatial proximity loggers for recording animal social networks: consequences of inter-logger variation in performance. Behav Ecol Sociobiol 67(11):1877–1890

    Article  Google Scholar 

  • Brahmbhatt DP, Fosgate GT, Dyason E, Budke CM, Gummow B, Jori F, Michael PW, Srinivasan R (2012) Contacts between domestic livestock and wildlife at the Kruger National Park Interface of the Republic of South Africa. Prev Vet Med 103(1):16–21

    Article  PubMed  Google Scholar 

  • Brannen J (ed) (2017) Mixing methods: qualitative and quantitative research. Routledge, New York, NY

    Google Scholar 

  • Bridges AS, Noss AJ (2011) Behavior and activity patterns. In: Camera traps in animal ecology. Springer, Tokyo, pp 27–43

    Google Scholar 

  • Brook RK, McLachlan SM (2006) Factors influencing farmers’ concerns regarding bovine tuberculosis in wildlife and livestock around Riding Mountain National Park. J Environ Manage 80(2):156–166

    Article  PubMed  Google Scholar 

  • Brook RK, Vander Wal E, van Beest FM, McLachlan SM (2013) Evaluating use of cattle winter feeding areas by elk and white-tailed deer: implications for managing bovine tuberculosis transmission risk from the ground up. Prev Vet Med 108(2–3):137–147

    Article  PubMed  Google Scholar 

  • Cagnacci F, Boitani L, Powell RA, Boyce MS (2010) Animal ecology meets GPS-based radiotelemetry: a perfect storm of opportunities and challenges. Philos Trans R Soc B 365:2157–2162

    Article  Google Scholar 

  • Cain JW III, Krausman PR, Jansen BD, Morgart JR (2005) Influence of topography and GPS fix interval on GPS collar performance. Wildl Soc Bull 33(3):926–934

    Article  Google Scholar 

  • Ceriotti M, Chini M, Murphy AL, Picco GP, Cagnacci F Tolhurst B (2010) Motes in the jungle: lessons learned from a short-term WSN deployment in the Ecuador cloud forest. In: Real-world wireless sensor networks. Springer, Berlin, pp 25–36

    Google Scholar 

  • Christie KS, Gilbert SL, Brown CL, Hatfield M, Hanson L (2016) Unmanned aircraft systems in wildlife research: current and future applications of a transformative technology. Front Ecol Environ 14(5):241–251

    Article  Google Scholar 

  • Cleaveland S, Laurenson MK, Taylor LH (2001) Diseases of humans and their domestic mammals: pathogen characteristics, host range and the risk of emergence. Philos Trans R Soc Lond B Biol Sci 356(1411):991–999

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cooper SM, Scott HM, De la Garza GR, Deck AL, Cathey JC (2010) Distribution and interspecies contact of feral swine and cattle on rangeland in south Texas: implications for disease transmission. J Wildl Dis 46(1):152–164

    Article  PubMed  Google Scholar 

  • Cowie CE, Beck BB, Gortázar C, Vicente J, Hutchings MR, Moran D, White PC (2014) Risk factors for the detected presence of Mycobacterium bovis in cattle in south central Spain. Eur J Wildl Res 60(1):113–123

    Article  Google Scholar 

  • Cowie CE, Hutchings MR, Barasona JA, Gortázar C, Vicente J, White PC (2016) Interactions between four species in a complex wildlife: livestock disease community: implications for Mycobacterium bovis maintenance and transmission. Eur J Wildl Res 62(1):51–64

    Article  Google Scholar 

  • Crispell J, Zadoks RN, Harris SR, Paterson B, Collins DM, de-Lisle GW, Livingstone P, Neill MA, Biek R, Lycett SJ, Kao RR, Price-Carter M (2017) Using whole genome sequencing to investigate transmission in a multi-host system: bovine tuberculosis in New Zealand. BMC Genomics 18(1):180

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Cunha MV, Matos F, Canto A, Albuquerque T, Alberto JR, Aranha JM, Vieira-Pinto M, Botelho A (2012) Implications and challenges of tuberculosis in wildlife ungulates in Portugal: a molecular epidemiology perspective. Res Vet Sci 92(2):225–235

    Article  PubMed  Google Scholar 

  • Day TD, O’Connor CE, Waas JR, Matthews LR (2000) Social interactions among captive brushtail possums (Trichosurus vulpecula). Appl Anim Behav Sci 70(2):157–165

    Article  CAS  PubMed  Google Scholar 

  • Dejene SW, Heitkönig IM, Prins HH, Lemma FA, Mekonnen DA, Alemu ZE, Kelkay TZ, de Boer WF (2016) Risk factors for bovine tuberculosis (bTB) in cattle in Ethiopia. PLoS One 11(7):e0159083

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • D’Eon RG, Serrouya R, Smith G, Kochanny CO (2002) GPS radio telemetry error and bias in mountainous terrain. Wildl Soc Bull 30:430–439

    Google Scholar 

  • Di Orio AP, Callas R, Schaefer RJ (2003) Performance of two GPS telemetry collars under different habitat conditions. Wildl Soc Bull 372–379

    Google Scholar 

  • Drewe JA, Weber N, Carter SP, Bearhop S, Harrison XA, Dall SR, McDonald RA, Delahay RJ (2012) Performance of proximity loggers in recording intra-and inter-species interactions: a laboratory and field-based validation study. PLoS One 7(6):e39068

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Dussault C, Courtois R, Ouellet JP, Huot J (1999) Evaluation of GPS telemetry collar performance for habitat studies in the boreal forest. Wildl Soc Bull 27:965–972

    Google Scholar 

  • Eberhardt LL (1968) A preliminary appraisal of line transects. J Wildl Manag 82–88

    Google Scholar 

  • Fieberg J, Kochanny CO (2005) Quantifying home-range overlap: the importance of the utilization distribution. J Wildl Manag 69(4):1346–1359

    Article  Google Scholar 

  • Focardi S, Aragno P, Montanaro P, Riga F (2006) Inter-specific competition from fallow deer Dama dama reduces habitat quality for the Italian roe deer Capreolus capreolus italicus. Ecography 29(3):407–417

    Article  Google Scholar 

  • Fornace KM, Drakeley CJ, William T, Espino F, Cox J (2014) Mapping infectious disease landscapes: unmanned aerial vehicles and epidemiology. Trends Parasitol 30(11):514–519

    Article  PubMed  Google Scholar 

  • Frair JL, Nielson SE, Merrill EH, Lele SR, Boyce MS, Munro RHM, Stenhouse GB, Beyer HL (2004) Removing GPS collar bias in habitat selection studies. J Appl Ecol 41:201–212

    Article  Google Scholar 

  • Frair JL, Fieberg J, Hebblewhite M, Cagnacci F, DeCesare NJ, Pedrotti L (2010) Resolving issues of imprecise and habitat-biased locations in ecological analyses using GPS telemetry data. Philos Trans R Soc Lond B Biol Sci 365(1550):2187–2200

    Article  PubMed  PubMed Central  Google Scholar 

  • García-Saenz A, Saez M, Napp S, Casal J, Saez JL, Acevedo P, Guta S, Allepuz A (2014) Spatio-temporal variability of bovine tuberculosis eradication in Spain (2006–2011). Spat Spatiotemporal Epidemiol 10:1–10

    Article  PubMed  Google Scholar 

  • González LF, Montes GA, Puig E, Johnson S, Mengersen K, Gaston KJ (2016) Unmanned Aerial Vehicles (UAVs) and artificial intelligence revolutionizing wildlife monitoring and conservation. Sensors 16(1):97

    Article  PubMed Central  Google Scholar 

  • Gortázar C, Vicente J, Samper S, Garrido JM, Fernández-De-Mera IG, Gavín P, Juste RA, Martín C, Acevedo P, de la Puente M, Höfle U (2005) Molecular characterization of Mycobacterium tuberculosis complex isolates from wild ungulates in south-central Spain. Vet Res 36(1):43–52

    Article  PubMed  CAS  Google Scholar 

  • Gortázar C, Ferroglio E, Höfle U, Frölich K, Vicente J (2007) Diseases shared between wildlife and livestock: a European perspective. Eur J Wildl Res 53(4):241

    Article  Google Scholar 

  • Gortázar C, Ferroglio E, Lutton CE, Acevedo P (2010) Disease-related conflicts in mammal conservation. Wildl Res 37(8):668–675

    Article  Google Scholar 

  • Gortázar C, Torres MJ, Acevedo P, Aznar J, Negro JJ, de la Fuente J, Vicente J (2011) Fine-tuning the space, time, and host distribution of mycobacteria in wildlife. BMC Microbiol 11(1):27

    Article  PubMed  PubMed Central  Google Scholar 

  • Gortázar C, Delahay RJ, Mcdonald RA, Boadella M, Wilson GJ, Gavier-Widen D, Acevedo P (2012) The status of tuberculosis in European wild mammals. Mamm Rev 42(3):193–206

    Article  Google Scholar 

  • Gortázar C, Fernández-Calle LM, Collazos-Martínez JA, Mínguez-González O, Acevedo P (2017) Animal tuberculosis maintenance at low abundance of suitable wildlife reservoir hosts: a case study in northern Spain. Prev Vet Med 146:150–157

    Article  PubMed  Google Scholar 

  • Graves TA, Waller JS (2006) Understanding the causes of missed global positioning system telemetry fixes. J Wildl Manag 70:844–851

    Article  Google Scholar 

  • Grenier D, Barrette C, Crête M (1999) Food access by white-tailed deer (Odocoileus virginianus) at winter feeding sites in eastern Québec. Appl Anim Behav Sci 63(4):323–337

    Article  Google Scholar 

  • Griffin JM, Hahesy T, Lynch K, Salman MD, McCarthy J, Hurley T (1993) The association of cattle husbandry practices, environmental factors and farmer characteristics with the occurrence of chronic bovine tuberculosis in dairy herds in the Republic of Ireland. Prev Vet Med 17(3–4):145–160

    Article  Google Scholar 

  • Guta S, Casal J, Napp S, Saez JL, Garcia-Saenz A, De Val BP, Romero B, Alvarez J, Allepuz A (2014) Epidemiological investigation of bovine tuberculosis herd breakdowns in Spain 2009/2011. PLoS One 9(8):e104383

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Humblet MF, Gilbert M, Govaerts M, Fauville-Dufaux M, Walravens K, Saegerman C (2010) New assessment of bovine tuberculosis risk factors in Belgium based on nationwide molecular epidemiology. J Clin Microbiol 48(8):2802–2808

    Article  PubMed  PubMed Central  Google Scholar 

  • Hurn J (1989) GPS: a guide to the next utility. Trimble Navigation, Sunnyvale, CA, 76 pp

    Google Scholar 

  • Ivan JS, Newkirk ES (2016) CPW Photo Warehouse: a custom database to facilitate archiving, identifying, summarizing and managing photo data collected from camera traps. Methods Ecol Evol 7(4):499–504

    Article  Google Scholar 

  • Ji W, Clout MN, Douglas M, Day T, Hendra R (1999) Mate ID: first trial of a novel device for measuring possum contacts. Adv Biol Control Possums 92–95

    Google Scholar 

  • Ji W, White PC, Clout MN (2005) Contact rates between possums revealed by proximity data loggers. J Appl Ecol 42(3):595–604

    Article  Google Scholar 

  • Jiang Z, Sugita M, Kitahara M, Takatsuki S, Goto T, Yoshida Y (2008) Effects of habitat feature, antenna position, movement, and fix interval on GPS radio collar performance in Mount Fuji, central Japan. Ecol Res 23:581–588

    Article  Google Scholar 

  • Jori F, Brahmbhatt D, Fosgate GT, Thompson PN, Budke C, Ward MP, Ferguson K, Gummow B (2011) A questionnaire-based evaluation of the veterinary cordon fence separating wildlife and livestock along the boundary of the Kruger National Park, South Africa. Prev Vet Med 100(3–4):210–220

    Article  CAS  PubMed  Google Scholar 

  • Jori F, Relun A, Trabucco B, Charrier F, Maestrini O, Chavernac D, Cornelis D, Casabianca F, Etter EMC (2017) Questionnaire-based assessment of wild boar/domestic pig interactions and implications for disease risk management in Corsica. Front Vet Sci 4:198

    Article  PubMed  PubMed Central  Google Scholar 

  • Kamerbeek J, Schouls LEO, Kolk A, Van Agterveld M, Van Soolingen D, Kuijper S, Bunschoten A, Molhuizen H, Shaw R, Goyal M, Van Embden J (1997) Simultaneous detection and strain differentiation of Mycobacterium tuberculosis for diagnosis and epidemiology. J Clin Microbiol 35(4):907–914

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kéry M, Schmidt B (2008) Imperfect detection and its consequences for monitoring for conservation. Community Ecol 9(2):207–216

    Article  Google Scholar 

  • Kukielka E, Barasona JA, Cowie CE, Drewe JA, Gortázar C, Cotarelo I, Vicente J (2013) Spatial and temporal interactions between livestock and wildlife in South Central Spain assessed by camera traps. Prev Vet Med 112(3–4):213–221

    Article  CAS  PubMed  Google Scholar 

  • Kukielka EA, Jori F, Martínez-López B, Chenais E, Masembe C, Chavernac D, Ståhl K (2016) Wild and domestic pig interactions at the wildlife–livestock interface of Murchison Falls National Park, Uganda, and the potential association with African Swine Fever Outbreaks. Front Vet Sci 3:31

    Article  PubMed  PubMed Central  Google Scholar 

  • Lachish S, Murray KA (2018) The certainty of uncertainty: potential sources of bias and imprecision in disease ecology studies. Front Vet Sci 5

    Google Scholar 

  • Laguna E, Barasona JA, Triguero-Ocaña R, Mulero-Pázmány M, Negro JJ, Vicente J, Acevedo P (2018) The relevance of host overcrowding in wildlife epidemiology: a new spatially explicit aggregation index. Ecol Indic 84:695–700

    Article  Google Scholar 

  • LaHue NP, Baños JV, Acevedo P, Gortázar C, Martínez-López B (2016) Spatially explicit modelling of animal tuberculosis at the wildlife-livestock interface in Ciudad Real province, Spain. Prev Vet Med 128:101–111

    Article  PubMed  Google Scholar 

  • Lämås T (2010) The Haglöf Pos Tex ultrasound instrument for the positioning of objects on forest sample plots (no. 296)

    Google Scholar 

  • Latham ADM, Latham MC, Anderson DP, Cruz J, Herries D, Hebblewhite M (2015) The GPS craze: six questions to address before deciding to deploy GPS technology on wildlife. N Z J Ecol 39(1):143–152

    Google Scholar 

  • Lavelle MJ, Fischer JW, Phillips GE, Hildreth AM, Campbell TA, Hewitt DG, Hygnstrom SE, Vercauteren KC (2014) Assessing risk of disease transmission: direct implications for an indirect science. BioScience 64(6):524–530

    Article  Google Scholar 

  • Lavelle MJ, Kay SL, Pepin KM, Grear DA, Campa H, VerCauteren KC (2016) Evaluating wildlife-cattle contact rates to improve the understanding of dynamics of bovine tuberculosis transmission in Michigan, USA. Prev Vet Med 135:28–36

    Article  PubMed  Google Scholar 

  • Lavers C, Franks K, Floy M, Plowman A (2005) Application of remote thermal imaging and night vision technology to improve endangered wildlife resource management with minimal animal distress and hazard to humans. J Phys Conf Ser 15(1):207. IOP

    Google Scholar 

  • Léna F (2002) Wild ungulates and mountain livestock breedings: spatial and sanitary relationships. Thesis. Veterinary Faculty, Lyon, France, 179 pp

    Google Scholar 

  • Levin II, Zonana DM, Burt JM, Safran RJ (2015) Performance of encounternet tags: field tests of miniaturized proximity loggers for use on small birds. PLoS One 10(9):e0137242

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Lewis JS, Rachlow JL, Garton EO, Vierling LA (2007) Effects of habitat on GPS collar performance: using data screening to reduce location error. J Appl Ecol 44(3):663–671

    Article  Google Scholar 

  • MacKenzie DI, Bailey LL, Nichols JD (2004) Investigating species co-occurrence patterns when species are detected imperfectly. J Anim Ecol 73(3):546–555

    Article  Google Scholar 

  • MAPAMA (2018) National program of bovine tuberculosis eradication (in Spanish). Available at https://www.mapama.gob.es/es/ganaderia/temas/sanidad-animal-higiene-ganadera/pnetb_2018_tcm30-436761.pdf

  • Marangon S, Martini M, Dalla Pozza M, Neto JF (1998) A case-control study on bovine tuberculosis in the Veneto Region (Italy). Prev Vet Med 34(2–3):87–95

    Article  CAS  PubMed  Google Scholar 

  • Martínez-López B, Barasona JA, Gortázar C, Rodríguez-Prieto V, Sánchez-Vizcaíno JM, Vicente J (2014) Farm-level risk factors for the occurrence, new infection or persistence of tuberculosis in cattle herds from South-Central Spain. Prev Vet Med 116(3):268–278

    Article  PubMed  Google Scholar 

  • Meek PD, Ballard AG, Fleming PJS (2012) An introduction to camera trapping for wildlife surveys in Australia. Invasive Animals Cooperative Research Centre, Canberra, Australia

    Google Scholar 

  • Meise K, Krüger O, Piedrahita P, Mueller A, Trillmich F (2013) Proximity loggers on amphibious mammals: a new method to study social relations in their terrestrial habitat. Aquat Biol 18(1):81–89

    Article  Google Scholar 

  • Mennill DJ, Doucet SM, Ward KAA, Maynard DF, Otis B, Burt JM (2012) A novel digital telemetry system for tracking wild animals: a field test for studying mate choice in a lekking tropical bird. Methods Ecol Evol 3(4):663–672

    Article  Google Scholar 

  • Miguel E, Grosbois V, Caron A, Boulinier T, Fritz H, Cornélis D, Foggin C, Makaya PV, Priscillia TT, de Garine-Wichatitsky M (2013) Contacts and foot and mouth disease transmission from wild to domestic bovines in Africa. Ecosphere 4(4):1–32

    Article  Google Scholar 

  • Minnaert B, Thoen B, Plets D, Joseph W, Stevens N (2017) Optimal energy storage solution for an inductively powered system for dairy cows. In: Wireless power transfer conference (WPTC), 2017 IEEE. IEEE, pp 1–4

    Google Scholar 

  • Moen RA, Pastor J, Cohen Y (1996) Accuracy of GPS telemetry collar locations with differential correction in theory and in practice. J Wildl Manag 61:530–539

    Article  Google Scholar 

  • Mulero-Pázmány M, Stolper R, Van Essen LD, Negro JJ, Sassen T (2014) Remotely piloted aircraft systems as a rhinoceros anti-poaching tool in Africa. PLoS One 9(1):e83873

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Noonan NL, Sheane WD, Harper LR, Ryan PJ (1975) Wildlife as a possible reservoir of bovine tuberculosis. Irish Vet J 29:1

    Google Scholar 

  • Nunn CL, Thrall PH, Kappeler PM (2014) Shared resources and disease dynamics in spatially structured populations. Ecol Model 272:198–207

    Article  Google Scholar 

  • O’Brien TG (2011) Abundance, density, and relative abundance: a conceptual framework. In: O’Connell AF, Nichols JD, Karanth KU (eds) Camera traps in animal ecology. Springer, Tokyo, pp 71–96

    Chapter  Google Scholar 

  • O’Reilly LM, Daborn CJ (1995) The epidemiology of Mycobacterium bovis infections in animals and man: a review. Tuber Lung Dis 76:1–46

    Article  PubMed  Google Scholar 

  • Ossi F, Focardi S, Picco GP, Murphy A, Molteni D, Tolhurst B, Giannini N, Gaillard JM, Cagnacci F (2016) Understanding and geo-referencing animal contacts: proximity sensor networks integrated with GPS-based telemetry. Anim Biotelemetry 4(1):21

    Article  Google Scholar 

  • Pfeiffer D, Robinson TP, Stevenson M, Stevens KB, Rogers DJ, Clements AC (2008) Spatial analysis in epidemiology, vol 142, no 10.1093. Oxford University Press, Oxford

    Google Scholar 

  • Picco GP, Molteni D, Murphy AL, Ossi F, Cagnacci F, Corrà M, Nicoloso S (2015) Geo-referenced proximity detection of wildlife with WildScope: design and characterization. In: Proceedings of the 14th international conference on information processing in sensor networks. ACM, pp 238–249

    Google Scholar 

  • Podgórski T, Lusseau D, Scandura M, Sönnichsen L, Jędrzejewska B (2014) Long-lasting, kin-directed female interactions in a spatially structured wild boar social network. PLoS One 9(6):e99875

    Article  PubMed  PubMed Central  Google Scholar 

  • Prange S, Jordan T, Hunter C, Gehrt SD (2006) New radiocollars for the detection of proximity among individuals. Wildl Soc Bull 34(5):1333–1344

    Article  Google Scholar 

  • Prange S, Gehrt SD, Hauver S (2011) Frequency and duration of contacts between free-ranging raccoons: uncovering a hidden social system. J Mammal 92(6):1331–1342

    Article  Google Scholar 

  • Proffitt KM, Gude JA, Hamlin KL, Garrott RA, Cunningham JA, Grigg JL (2011) Elk distribution and spatial overlap with livestock during the brucellosis transmission risk period. J Appl Ecol 48(2):471–478

    Article  Google Scholar 

  • Pruvot M, Kutz S, Van Der Meer F, Musiani M, Barkema HW, Orsel K (2014) Pathogens at the livestock-wildlife interface in Western Alberta: does transmission route matter? Vet Res 45(1):18

    Article  PubMed  PubMed Central  Google Scholar 

  • Rempel RS, Rodgers AR (1997) Effects of differential correction on accuracy of a GPS animal location system. J Wildl Manag 525–530

    Google Scholar 

  • Richomme C, Gauthier D, Fromont E (2006) Contact rates and exposure to inter-species disease transmission in mountain ungulates. Epidemiol Infect 134(1):21–30

    Article  CAS  PubMed  Google Scholar 

  • Ripperger S, Josic D, Hierold M, Koelpin A, Weigel R, Hartmann M, Page R, Mayer F (2016) Automated proximity sensing in small vertebrates: design of miniaturized sensor nodes and first field tests in bats. Ecol Evol 6(7):2179–2189

    Article  PubMed  PubMed Central  Google Scholar 

  • Robert K, Garant D, Pelletier F (2012) Keep in touch: does spatial overlap correlate with contact rate frequency? J Wildl Manag 76(8):1670–1675

    Article  Google Scholar 

  • Rodríguez-Prieto V, Martínez-López B, Barasona JA, Acevedo P, Romero B, Rodriguez-Campos S, Gortázar C, Sánchez-Vizcaíno JM, Vicente J (2012) A Bayesian approach to study the risk variables for tuberculosis occurrence in domestic and wild ungulates in South Central Spain. BMC Vet Res 8(1):148

    Article  PubMed  PubMed Central  Google Scholar 

  • Rovero F, Zimmermann F, Berzi D, Meek P (2013) “Which camera trap type and how many do I need?” A review of camera features and study designs for a range of wildlife research applications. Hystrix 24(2)

    Google Scholar 

  • Rowcliffe JM, Field J, Turvey ST, Carbone C (2008) Estimating animal density using camera traps without the need for individual recognition. J Appl Ecol 45(4):1228–1236

    Article  Google Scholar 

  • Ruiz-Fons F (2017) A review of the current status of relevant zoonotic pathogens in wild swine (Sus scrofa) populations: changes modulating the risk of transmission to humans. Transbound Emerg Dis 64(1):68–88

    Article  CAS  PubMed  Google Scholar 

  • Rutz C, Burns ZT, James R, Ismar SM, Burt J, Otis B, Bowen J, St Clair JJ (2012) Automated mapping of social networks in wild birds. Curr Biol 22(17):R669–R671

    Article  CAS  PubMed  Google Scholar 

  • Rutz C, Morrissey MB, Burns ZT, Burt J, Otis B, St Clair JJ, James R (2015) Calibrating animal-borne proximity loggers. Methods Ecol Evol 6(6):656–667

    Article  PubMed  PubMed Central  Google Scholar 

  • Sager-Fradkin KA, Jenkins KJ, Hoffman RA, Happe PJ, Beecham JJ, Wright RG (2007) Fix success and accuracy of global positioning system collars in old- growth temperate coniferous forests. J Wildl Manag 71:1298–1308

    Article  Google Scholar 

  • Sanderson JG, Trolle M (2005) Monitoring elusive mammals: unattended cameras reveal secrets of some of the world’s wildest places. Am Sci 93(2):148–155

    Article  Google Scholar 

  • Schauber EM, Storm DJ, Nielsen CK (2007) Effects of joint space use and group membership on contact rates among white-tailed deer. J Wildl Manag 71(1):155–163

    Article  Google Scholar 

  • Schauber EM, Nielsen CK, Kjær LJ, Anderson CW, Storm DJ (2015) Social affiliation and contact patterns among white-tailed deer in disparate landscapes: implications for disease transmission. J Mammal 96(1):16–28

    Article  PubMed  PubMed Central  Google Scholar 

  • Schulte PA, Perera FP (eds) (1998) Molecular epidemiology: principles and practices. Academic

    Google Scholar 

  • Sparkes J, Ballard G, Fleming PJ, van de Ven R, Körtner G (2016) Contact rates of wild-living and domestic dog populations in Australia: a new approach. Oecologia 182(4):1007–1018

    Article  PubMed  Google Scholar 

  • Swann DE, Kawanishi K, Palmer J (2011) Evaluating types and features of camera traps in ecological studies: a guide for researchers. In: Camera traps in animal ecology. Springer, Tokyo, pp 27–43

    Google Scholar 

  • Tabak MA, Norouzzadeh MS, Wolfson DW, Sweeney SJ, VerCauteren KC, Snow NP, Halseth JM, Di Salvo PA, Lewis JS, White MD (2018) Machine learning to classify animal species in camera trap images: applications in ecology. Methods Ecol Evol 1–6

    Google Scholar 

  • Tack JLP, West BS, McGowan CP, Ditchkoff SS, Reeves SJ, Keever AC, Grand JB (2016) Animal finder: a semi-automated system for animal detection in time-lapse camera trap images. Eco Inform 36:145–151

    Article  Google Scholar 

  • Tambling CJ, Belton LE (2009) Feasibility of using proximity tags to locate female lion Panthera leo kills. Wildl Biol 15(4):435–441

    Article  Google Scholar 

  • Thompson ID, Bakhtiari M, Rodgers AR, Baker JA, Fryxell JM, Iwachewski E (2012) Application of a high-resolution animal-borne remote video camera with global positioning for wildlife study: observations on the secret lives of woodland caribou. Wildl Soc Bull 36:365–370

    Article  Google Scholar 

  • Tolhurst BA, Delahay RJ, Walker NJ, Ward AI, Roper TJ (2009) Behaviour of badgers (Meles meles) in farm buildings: opportunities for the transmission of Mycobacterium bovis to cattle? Appl Anim Behav Sci 117(1–2):103–113

    Article  Google Scholar 

  • Totton SC, Tinline RR, Rosatte RC, Bigler LL (2002) Contact rates of raccoons (Procyon lotor) at a communal feeding site in rural eastern Ontario. J Wildl Dis 38(2):313–319

    Article  PubMed  Google Scholar 

  • Triguero-Ocaña R, Barasona JA, Carro F, Soriguer RC, Vicente J, Acevedo P (2019a) Spatio-temporal trends in the frequency of interspecific interactions between domestic and wild ungulates from Mediterranean Spain. PLoS One 14(1):e0211216

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Triguero-Ocaña R, Vicente J, Acevedo P (2019b) Performance of proximity loggers under controlled field conditions: an assessment from a wildlife ecological and epidemiological perspective. Anim Biotelemetry 7(1):1–9

    Article  Google Scholar 

  • Triguero-Ocaña R, Vicente J, Palencia P, Laguna E, Acevedo P (2020) Quantifying wildlife-livestock interactions and their spatio-temporal patterns: is regular grid camera trapping a suitable approach? Ecol Indic 117:106565

    Article  Google Scholar 

  • van der Jeugd HP, Prins HH (2000) Movements and group structure of giraffe (Giraffa camelopardalis) in Lake Manyara National Park, Tanzania. J Zool 251(1):15–21

    Article  Google Scholar 

  • VanderWaal KL, Atwill ER, Isbell LA, McCowan B (2014) Quantifying microbe transmission networks for wild and domestic ungulates in Kenya. Biol Conserv 169:136–146

    Article  Google Scholar 

  • Van Moorter B, Rolandsen CM, Basille M, Gaillard JM (2016) Movement is the glue connecting home ranges and habitat selection. J Anim Ecol 85(1):21–31

    Article  PubMed  Google Scholar 

  • Vermeulen C, Lejeune P, Lisein J, Sawadogo P, Bouché P (2013) Unmanned aerial survey of elephants. PLoS One 8(2):e54700

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Villanúa D, Casas F, Viñuela J, Gortázar C, García de la Morena E, Morales M (2007) First occurrence of Eucoleus contortus in a Little Bustard Tetrax tetrax: negative effect of Red-legged Partridge. Ibis 149:405–406

    Article  Google Scholar 

  • Villanúa D, Pérez-Rodríguez L, Casas F, Alzaga V, Acevedo P, Viñuela J, Gortázar C (2008) Sanitary risks of red-legged partridge releases: introduction of parasites. Eur J Wildl Res 54(2):199–204

    Article  Google Scholar 

  • Walrath R, Van Deelen TR, VerCauteren KC (2011) Efficacy of proximity loggers for detection of contacts between maternal pairs of white-tailed deer. Wildl Soc Bull 35(4):452–460

    Article  Google Scholar 

  • White PC, Harris S (1994) Encounters between red foxes (Vulpes vulpes): implications for territory maintenance, social cohesion and dispersal. J Anim Ecol 315–327

    Google Scholar 

  • White PC, Jennings NV, Renwick AR, Barker NH (2005) Questionnaires in ecology: a review of past use and recommendations for best practice. J Appl Ecol 42(3):421–430

    Article  Google Scholar 

  • Williams DM, Quinn ACD, Porter WF (2014) Informing disease models with temporal and spatial contact structure among GPS-collared individuals in wild populations. PLoS One 9(1):e84368

    Article  PubMed  PubMed Central  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Pelayo Acevedo .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Triguero-Ocaña, R., Vicente, J., Lavelle, M., Acevedo, P. (2021). Collecting Data to Assess the Interactions Between Livestock and Wildlife. In: Vicente, J., Vercauteren, K.C., Gortázar, C. (eds) Diseases at the Wildlife - Livestock Interface. Wildlife Research Monographs, vol 3. Springer, Cham. https://doi.org/10.1007/978-3-030-65365-1_10

Download citation

Publish with us

Policies and ethics