Skip to main content

Host Community Interfaces: The Wildlife-Livestock

  • Chapter
  • First Online:
Diseases at the Wildlife - Livestock Interface

Part of the book series: Wildlife Research Monographs ((WIREMO,volume 3))

Abstract

The livestock compartment and its interfaces with humans and wildlife appeared after domestication. These epidemiological interfaces have constituted opportunities for horizontal transmission between species and a new space for evolution, emergence, and maintenance of pathogens. More recently, anthropogenic effects and the subsequent changes in urban areas, farming, food systems, and natural ecosystems have led to increased exposure of human and animal populations to novel pathogens and the establishment of newly shared emergent diseases. Humans, animals (both domestic and wild), and ecosystems are more tightly linked than ever. The third significant Coronavirus to emerge in humans in 17 years, COVID-19, exemplifies the increased risks for pathogens to jump from infected wild animals to humans. The world is also experiencing unprecedented emergence and spread of many diseases that in livestock have “spilled over” to wild populations and have “spilled back” to livestock. The ever-increasing role of anthropogenic drivers of change suggests a future exponential growth in interactions among wildlife, domestic animals, and humans, with important implications, including additional disease emergence at interfaces. The recent pandemic increases our certainty that we need a systems-wide holistic perspective on pathogen dynamics at the wildlife-livestock-human interface based on interdisciplinary approaches to the examination of biological, ecological, economic, and social drivers of pathogen emergence. Simply, we cannot look at any compartment in isolation from others as they are ineludibly and functionally linked through ecological and evolutionary processes underlying host jumps by pathogens. The implementation of actions (ranging from local to holistic) under this principle across the animal health, human health, and environment sectors will be a challenge. We need to understand, predict, prevent, detect, and control disease emergence at their main origin, the animal interfaces. Detecting early warning signs at the origin of pathogen emergence is imperative so it can be halted before it leads to dramatic local, regional, or global consequences. This approach is likely to be more cost-effective than adaptation to mitigate consequences. However, the wildlife-livestock interface has been often neglected and, consequently, disease spillover is largely underreported, even zoonoses. This chapter summarizes the complex wildlife-livestock interface in all its dimensions, to include changing natural landscapes and increasing anthropogenic impacts. We identify essential gaps that prevent us from better understanding and managing disease dynamics at the interface.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  • Abrahão JS, Guedes MIM, Trindade GS, Fonseca FG, Campos RK, Mota BF, Lobato ZIP, Silva-Fernandes AT, Rodrigues GOL, Lima LS, Ferreira PCP, Bonjardim CA, Kroon EG (2009) One more piece in the vacv ecological puzzle: could peridomestic rodents be the link between wildlife and bovine vaccinia outbreaks in Brazil? PLoS One 4(10):e7428

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Alexander KA, Carlson CJ, Lewis BL, Getz WM, Marathe MV, Eubank SG, Sanderson CE, Blackburn JK (2018) The ecology of pathogen spillover and Disease emergence at the human- wildlife-environment Interface chapter 8. In: Disease I, Hurst CJ (eds) In book: the connections between ecology and. Springer, Berlin

    Google Scholar 

  • Anderson RM, Fraser C, Ghani AC, Donnelly CA, Riley S, Ferguson NM, Leung GM, Lam TH, Hedley AJ (2004) Epidemiology, transmission dynamics and control of SARS: the 2002-2003 epidemic. Philos Trans R Soc Lond Ser B Biol Sci 29:1091–1105

    Article  Google Scholar 

  • Barasona JA, VerCauteren KC, Saklou N, Gortazar C, Vicente J (2013) Effectiveness of cattle operated bump gates and exclusion fences in preventing ungulate multi-host sanitary interaction. Prev Vet Med 111:42–50

    Article  CAS  PubMed  Google Scholar 

  • Barasona JA, Vicente J, Diez-Delgado I, Aznar J, Gortázar C, Torres MJ (2017) Environmental presence of Mycobacterium tuberculosis complex in aggregation points at the wildlife-livestock interface. Transbound Emerg Dis 64:1148–1158

    Article  CAS  PubMed  Google Scholar 

  • Barroso P, Acevedo P, Vicente J (2020) The importance of long-term studies on wildlife diseases and their interfaces with humans and domestic animals: A review. Transbound Emerg Dis 2020(00):1–15

    Google Scholar 

  • Baum SE, Machalaba C, Daszak P, Salerno RH, Karesh WB (2017) Evaluating one health: are we demonstrating effectiveness? Health, One

    Google Scholar 

  • Becker DJ, Streicker DG, Altizer S (2015) Linking anthropogenic resources to wildlife–pathogen dynamics: a review and meta-analysis. Ecol Lett 18:483–495

    Article  PubMed  PubMed Central  Google Scholar 

  • Becker DJ, Washburne AD, Faust CL, Pulliam JRC, Mordecai EA, Lloyd-Smith JO, Plowright RK (2019) Dynamic and integrative approaches to understanding pathogen spillover. Philos Trans R Soc Lond Ser B Biol Sci 374:20190014

    Article  Google Scholar 

  • Beltran-Alcrudo D, Falco JR, Raizman E, Dietze K (2019) Transboundary spread of pig diseases: the role of international trade and travel. BMC Vet Res 15:64

    Article  PubMed  PubMed Central  Google Scholar 

  • Berezowski J, Akkina DRVVJ, DeVore K, Dorea FC, Dupuy C, Maxwell MJ, Singh VV, Vial F, Contadini FM, Streichert LC (2019) One health surveillance: perceived benefits and workforce motivations. Rev Sci Tech 38:251–260

    Article  CAS  PubMed  Google Scholar 

  • Boni MF, Lemey P, Jiang X, Lam TT, Perry BW, Castoe TA, Rambaut A, Robertson DL (2020) Evolutionary origins of the SARS-CoV-2 sarbecovirus lineage responsible for the COVID-19 pandemic. Nat Microbiol 5:1408. https://doi.org/10.1038/s41564-020-0771-4

    Article  CAS  PubMed  Google Scholar 

  • Caron A, Cappelle J, Cumming GS, de Garine-Wichatitsky M, Gaidet N (2015) Bridge hosts, a missing link for disease ecology in multi-host systems. Vet Res 46:83

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Chua KB (2003) Nipah Virus Outbreak in Malaysia. Clin Virol 26:265–275

    Article  Google Scholar 

  • Cleaveland S, Laurenson MK, Taylor LH (2001) Diseases of humans and their domestic mammals; pathogen characteristics, host range and the risk of emergence. Philos Trans R Soc Lond Ser B Biol Sci 356:991–910

    Google Scholar 

  • Costard S, Mur L, Lubroth J, Sanchez-Vizcaino JM, Pfeiffer DU (2017) Epidemiology of African swine fever virus. Virus Res 173:191–197

    Article  CAS  Google Scholar 

  • De Vos A, Cumming GS, Cumming D, Ament JM, Baum J, Clements H, Grewar J, Maciejewski K, Moore C (2016) Pathogens, disease, and the social-ecological resilience of protected areas. Ecol Soc 21:20

    Article  Google Scholar 

  • Ellis TM, Bousfield RB, Bissett LA, Dyrting KC, Luk GSM, Tsim SAT, Sturm-ramirez K, Webster RG, Guan Y, Peiris JSM (2004) Investigation of outbreaks of highly pathogenic H5N1 avian influenza in waterfowl and wild birds in Hong Kong in late 2002. Av Pathol 33:492–505

    Article  Google Scholar 

  • ENETWILD consortium, Fernandez-Lopez J, Acevedo P, Blanco-Aguiar JA, Vicente J (2020) Analysis of wild boar-domestic pig interface in Europe: preliminary analysis. EFSA supporting publication 2020:EN-1834

    Google Scholar 

  • Farine DR (2018) When to choose dynamic vs. static social network analysis. J Anim Ecol 87:128–138

    Article  PubMed  Google Scholar 

  • Faust CL, Dobson AP, Gott- denker N, Bloomfield LSP, McCallum HI, Gillespie TR, Diuk-Wasser M, Plowright RK (2017) Null expectations for disease dynamics in shrinking habitat: dilution or amplification? Phil Trans R Soc B 372:20160173

    Article  PubMed  PubMed Central  Google Scholar 

  • Gavier-Widen D, Gortazar C, Stahl K, Neimanis AS, Rossi S, Hård av Segerstad C, Kuiken T (2015) African swine fever in wild boar in Europe: a notable challenge. Vet Rec 176:199–200

    Google Scholar 

  • Gilbert M, Golding N, Zhou H, Zhou H, Wint GR, Robinson TP, Tatem AJ, Lai S, Zhou S, Jiang H, Guo D, Huang Z, Messina JP, Xiao X, Linard C, Van Boeckel TP, Martin V, Bhatt S, Gething PW, Farrar JJ, Hay SI, Yu H (2014) Predicting the risk of avian influenza, a H7N9 infection in live-poultry markets across Asia. Nat Commun 5:4116

    Article  CAS  PubMed  Google Scholar 

  • Gortazar C, Acevedo P, Ruiz-Fons F, Vicente J (2006) Disease risk and overabundance of game species. Eur J Wildl Res 52:81–87

    Article  Google Scholar 

  • Gortazar C, Ferroglio E, Höfle U, Frölich K, Vicente J (2007) Diseases shared between wildlife and livestock: a European perspective. Eur J Wildl Res 53:241–256

    Article  Google Scholar 

  • Grassly NC, Fraser C (2008) Mathematical models of infectious disease transmission. Nat Rev Microbiol 6:477–487

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Han BA, Kramer AM, Drake JM (2016) Global patterns of zoonotic disease in mammals. Trends Parasitol 32(7):565–577

    Article  PubMed  PubMed Central  Google Scholar 

  • Harrison S, Kivuti-Bitok L, Macmillan A, Priest P (2019) EcoHealth and one health: a theory-focused review in response to calls for convergence. Environ Int 132:105058

    Article  PubMed  Google Scholar 

  • Hartfield M, Alizon S (2013) Introducing the outbreak threshold in epidemiology. PLoS Pathog 9(6):e1003277

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hassell JM, Begon M, Ward MJ, Fèvre EM (2017) Urbanization and Disease emergence: dynamics at the wildlife–livestock–human Interface. Trends Ecol Evol 32:55–67

    Article  PubMed  PubMed Central  Google Scholar 

  • Haydon DT, Cleaveland S, Taylor LH, Laurenson MK (2002) Identifying reservoirs of infection: a conceptual and practical challenge. Emerg Infect Dis 8:1468–1473

    Google Scholar 

  • Hochachka WM, Dhondt AA, Dobson A, Hawley DM, Ley DH, Lovette IJ (2013) Multiple host transfers, but only one successful lineage in a continent-spanning emergent pathogen. Proc R Soc B 280:20131068

    Article  PubMed  PubMed Central  Google Scholar 

  • Hudson PJ, Rizzoli A, Grenfell BT, Heesterbeek H, Dobson AP (2002) The ecology of wildlife diseases. University Press, Oxford

    Google Scholar 

  • Huyvaert KP, Russell RE, Patyk KA, Craft ME, Cross PC, Garner MG, Martin MK, Nol P, Walsh DP (2018) Challenges and opportunities developing mathematical models of shared pathogens of domestic and wild animals. Vet Sci 5:92

    Article  PubMed Central  Google Scholar 

  • Johnson PTJ, de Roode JC, Fenton A (2015a) Why infectious disease research needs community ecology. Science 349:1259504

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Johnson PTJ, de Roode JC, Fenton A (2015b September 4) Why infectious disease research needs community ecology. Science 349(6252):1259504. https://doi.org/10.1126/science.1259504

  • Johnson CK, Hitchens PL, Pandit PS, Rushmore J, Evans TS, Young CCW, Doyle MM (2020) Global shifts in mammalian population trends reveal key predictors of virus spillover risk. Proc R Soc B 287:0192736

    Article  Google Scholar 

  • Jones BA, Grace D, Kock R, Alonso S, Rushton J, Said MY, McKeever D, Mutua F, Young J, McDermott J, Pfeiffer DU (2013) Zoonosis emergence linked to agricultural intensification and environmental change. Proc Natl Acad Sci U S A 110(21):8399–8404

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Jori F, Martínez-López B, Vicente J (2019) Editorial: novel approaches to assess Disease dynamics at the wildlife livestock Interface. Front Vet Sci 6(409):2019

    Google Scholar 

  • Keeling MJ, Rohani P (2008) Modeling infectious diseases in humans and animals. Princeton University Press, Princeton, NJ

    Book  Google Scholar 

  • Kock R (2005) In: Osofsky SA (ed) What is this infamous “wildlife-livestock disease interface?” A review of current knowledge for the African continent. Conservation and development interventions at the wildlife-livestock Interface. Implications for wildlife, livestock, and human health. International Union for Conservation of Nature, Cambridge

    Google Scholar 

  • Kukielka E, Barasona JA, Cowie CE, Drewe JA, Gortazar C, Cotarelo I, Vicente J (2013) Spatial and temporal interactions between livestock and wildlife in south Central Spain assessed by camera traps. Prev Vet Med 112:213–221

    Article  CAS  PubMed  Google Scholar 

  • Li F (2008) Structural analysis of major species barriers between humans and palm civets for severe acute respiratory syndrome coronavirus infections. J Virol 82:6984–6991

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lindahl JF, Grace D (2015) The consequences of human actions on risks for infectious diseases: a review. Infect Ecol Epidemiol 5:30048. https://doi.org/10.3402/iee.v5.30048

    Article  PubMed  Google Scholar 

  • Lloyd-Smith JO, George D, Pepin KM, Pitzer VE, Pulliam JRC, Dobson AP, Hudson PJ, Grenfell BT (2009) Epidemic dynamics at the human-animal interface. Science 326:1362–1367

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Morand S, McIntyre KM, Baylis M (2014) Domesticated animals and human infectious diseases of zoonotic origins: domestication time matters. Infect Genet Evol 24:76–81

    Google Scholar 

  • Morens DM, Daszak P, Taubenberger JK (2020) Escaping Pandora’s box – another novel coronavirus. N Engl J Med 382:1293–1295

    Article  CAS  PubMed  Google Scholar 

  • Morgan AD, Koskella B (2011) Coevolution of host and pathogen disease. Elsevier, Burlington, MA, pp 147–171

    Google Scholar 

  • Nijman V, Morcatty T, Smith JH, Atoussi S, Shepherd CR, Siriwat P, Nekaris KA, Bergin D (2019) Illegal wildlife trade – surveying open animal markets and online platforms to understand the poaching of wild cats. Biodiversity 20:58–61

    Article  Google Scholar 

  • Norman R, Bowers RG, Begon M, Hudson PJ (1999) Persistence of tick-horne virus in the presence of multiple host species: tick reservoirs and parasite mediated competition. J Theor Biol 200:111–118

    Article  CAS  PubMed  Google Scholar 

  • OIE and FAO (2012) The global foot and mouth disease control strategy. Strengthening animal health systems through improved control of major diseases. https://www.oie.int/doc/ged/D11886.PDF

  • Ostfeld RS, Keesing F (2012) Effects of host diversity on infectious Disease. Annu Rev Ecol Evol Syst 43:157–182

    Article  Google Scholar 

  • Ostfeld RS, Keesing F, Eviner VT (2008) Infectious disease ecology: effects of ecosystems on disease and of disease on ecosystems. University Press, Princeton

    Book  Google Scholar 

  • Ostfeld RS, Keesing F, Eviner VT (2010) Infectious disease ecology: effects of ecosystems on disease and of disease on ecosystems (Course Book ed.). Princeton University Press, Princeton

    Book  Google Scholar 

  • Ostrom E (2009) A general framework for analyzing sustainability of social-ecological systems. Science 352:419–422

    Article  CAS  Google Scholar 

  • Packer C, Altizer S, Appel M, Brown E, Martenson J, O'Brien SJ, Roelke-Parker M, Hofmann-Lehmann R, Lutz H (1999) Viruses of the Serengeti: patterns of infection and mortality in African lions. J Anim Ecol 68:1161–1178

    Article  PubMed Central  Google Scholar 

  • Pays O, Benhamou S, Helder R, Gerard JF (2007) The dynamics of group formation in large mammalian herbivores: an analysis in the European roe deer. Anim Behav 74:1429–1441

    Article  Google Scholar 

  • Pepin KM, Lass S, Pulliam JRC, Read AF, Lloyd-Smith JO (2010) Identifying genetic markers of adaptation for surveillance of viral host jumps. Nat Rev Microbiol 8:802–813

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Pike P, Bogich JT, Elwood S, Finnoff DC, Daszak P (2014) Economic optimization of a global strategy to address the pandemic threat. Proc Natl Acad Sci U S A 111:18519–18523

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Plowright K, Parrish CR, McCallum H, Hudson PJ, Ko AI, Graham AL, Lloyd-Smith JO (2017) Pathways to zoonotic spillover. Raina Nat Rev Microbiol 15:502–510

    Article  CAS  Google Scholar 

  • Ramey AM, Ahlstrom CA (2020) Antibiotic resistant bacteria in wildlife: perspectives on trends, acquisition and dissemination, data gaps, and future directions. J Wildl Dis 56(1):15

    Article  Google Scholar 

  • Rhyan JC, Spraker TR (2010) Emergence of diseases from wildlife reservoirs. Vet Pathol 47:34–39

    Article  CAS  PubMed  Google Scholar 

  • Robinson TP, Wint GRW, Conchedda G, Van Boeckel TP, Ercoli V, Palamara E, Cinardi G, D'Aietti L, Hay SI, Gilbert M (2014) Mapping the global distribution of livestock. PLoS One 9(5):e96084

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Roche B, Dobson AP, Guégan J, Rohani P (2012) Linking community and disease ecology: the impact of biodiversity on pathogen transmission. Philos Trans R Soc Lond Ser B Biol Sci 367:2807–2813

    Article  Google Scholar 

  • Savory A (2016) Holistic management, third edition: a commonsense revolution to restore our environment, 3rd edn. Island Press, Washington, DC

    Google Scholar 

  • Sheahan T, Rock B, Donaldson E, Corti D, Baric R (2008) Pathways of cross-species transmission of synthetically reconstructed zoonotic severe acute respiratory syndrome coronavirus. J Virol 82:8721–8732

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Stearns SC, Koella JC (2008) Evolution in health and Disease, 2nd edn. Oxford University Press, Oxford

    Google Scholar 

  • Steinfeld H, Gerber P, Wassenaar T, Castel V, Rosales M, de Haan C (2006) Livestock’s long shadow: environmental issues and options. FAO, Rome

    Google Scholar 

  • Sturm-Ramirez KM, Ellis T, Bousfield B, Bissett L, Dyrting K, Rehg JE, Poon L, Guan Y, Peiris M, Webster RG (2004) Reemerging H5N1 Influenza Viruses in Hong Kong in 2002 Are Highly Pathogenic to Ducks. J Virol 78(9):4892–4901

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Thornton PK (2010) Livestock production: recent trends, future prospects. Philos Trans R Soc Lond Ser B Biol Sci 365:2853–2867

    Article  Google Scholar 

  • Viana M, Mancy R, Biek R, Cleaveland S, Cross PC, Lloyd-Smith JO, Haydon DT (2014) Assembling evidence for identifying reservoirs of infection. Trends Ecol Evol 29:270–279

    Article  PubMed  PubMed Central  Google Scholar 

  • Vicente J, Vercauteren K (2019) The role of scavenging in Disease dynamics. In: Olea PP, Mateo-Tomás P, Sánchez-Zapata JA (eds) Carrion ecology and management. Springer, Berlin

    Google Scholar 

  • Walsh MG, Mor SM, Hossain S (2019) The elephant–livestock interface modulates anthrax suitability in India. Proc Biol Sci 286:20190179

    PubMed  PubMed Central  Google Scholar 

  • Wiethoelter AK, Beltrán-Alcrudo D, Kock R, Mor SM (2015) Global trends in infectious diseases at the wildlife–livestock interface. PNAS 112:9662–9667

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wilson K, Fenton A, Tompkins D (eds) (2019) Wildlife Disease ecology: linking theory to data and application. University Press, Cambridge

    Google Scholar 

  • Woolhouse ME, Gowtage-Sequeria S (2005) Host range and emerging and reemerging pathogens. Emerg Infect Dis 11:1842–1847

    Article  PubMed  PubMed Central  Google Scholar 

  • Wu T, Perrings C, Kinzig A, Collins JP, Minteer BA, Daszak P (2017) Economic growth, urbanization, globalization, and the risks of emerging infectious diseases in China: a review. Ambio 46:18–29

    Article  CAS  PubMed  Google Scholar 

  • Zhao GP (2007) SARS molecular epidemiology: a Chinese fairy tale of controlling an emerging zoonotic disease in the genomics era. Philos Trans R Soc Lond Ser B Biol Sci 362:1063–1081

    Article  CAS  Google Scholar 

  • Zhou P, Fan H, Lan T, Lan T, Yang X-L, Shi W-F, Zhang W, Zhu Y, Zhang Y-W, Xie Q-M, Mani S, Zheng X-S, Li B, Li J-M, Guo H, Pei G-Q, An X-P, Chen J-W, Zhou L, Mai K-J, Zi-Xian W, Di L, Anderson DE, Zhang L-B, Li S-Y, Mi Z-Q, He T-T, Cong F, Guo P-J, Huang R, Luo Y, Liu X-L, Chen J, Huang Y, Sun Q, Zhang X-L-L, Wang Y-Y, Xing S-Z, Chen Y-S, Sun Y, Li J, Daszak P, Wang L-F, Shi Z-L, Tong Y-G, Ma J-Y (2018) Fatal swine acute diarrhoea syndrome caused by an HKU2-related coronavirus of bat origin. Nature 556:255–258

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Joaquín Vicente .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Vercauteren, K.C., Gortázar, C., Beltrán-Alcrudo, D., Vicente, J. (2021). Host Community Interfaces: The Wildlife-Livestock. In: Vicente, J., Vercauteren, K.C., Gortázar, C. (eds) Diseases at the Wildlife - Livestock Interface. Wildlife Research Monographs, vol 3. Springer, Cham. https://doi.org/10.1007/978-3-030-65365-1_1

Download citation

Publish with us

Policies and ethics