Skip to main content

A Random Growth Model with Any Real or Theoretical Degree Distribution

  • Conference paper
  • First Online:
Complex Networks & Their Applications IX (COMPLEX NETWORKS 2020 2020)

Part of the book series: Studies in Computational Intelligence ((SCI,volume 944))

Included in the following conference series:

Abstract

The degree distributions of complex networks are usually considered to be power law. However, it is not the case for a large number of them. We thus propose a new model able to build random growing networks with (almost) any wanted degree distribution. The degree distribution can either be theoretical or extracted from a real-world network. The main idea is to invert the recurrence equation commonly used to compute the degree distribution in order to find a convenient attachment function for node connections - commonly chosen as linear. We compute this attachment function for some classical distributions, as the power-law, broken power-law, geometric and Poisson distributions. We also use the model on an undirected version of the Twitter network, for which the degree distribution has an unusual shape.

This work has been supported by the French government through the UCA JEDI (ANR-15-IDEX-01) and EUR DS4H (ANR-17-EURE-004) Investments in the Future projects, by the SNIF project, and by Inria associated team EfDyNet.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 259.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 329.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 329.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Notes

  1. 1.

    We call a broken power-law a concatenation of two power-laws, as defined in [14].

  2. 2.

    Note that Eq. 1 can also be expressed as \(f(i)=\frac{P(k>i)}{P(i)}\).

References

  1. Ahn, Y.-Y., Han, S., Kwak, H., Moon, S., Jeong, H.: Analysis of topological characteristics of huge online social networking services. In: Proceedings of the 16th International Conference on World Wide Web, pp. 835–844 (2007)

    Google Scholar 

  2. Albert, R., Barabási, A.-L.: Statistical mechanics of complex networks. Rev. Mod. Phys. 74(1), 47 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  3. Bollobás, B.: A probabilistic proof of an asymptotic formula for the number of labelled regular graphs. Eur. J. Comb. 1(4), 311–316 (1980)

    Article  MathSciNet  MATH  Google Scholar 

  4. Bollobás, B., Borgs, C., Chayes, J.T., Riordan, O.: Directed scale-free graphs. In: SODA, vol. 3, pp. 132–139 (2003)

    Google Scholar 

  5. Broido, A.D., Clauset, A.: Scale-free networks are rare. Nat. Commun. 10(1), 1–10 (2019)

    Article  Google Scholar 

  6. Cha, M., Mislove, A., Gummadi, K.P.: A measurement-driven analysis of information propagation in the Flickr social network. In: Proceedings of the 18th International Conference on World Wide Web, pp. 721–730 (2009)

    Google Scholar 

  7. Chung, F., Chung, F.R.K., Graham, F.C., Lu, L., Chung, K.F., et al.: Complex graphs and networks. Am. Math. Soc. (2006)

    Google Scholar 

  8. Clauset, A., Shalizi, C.R., Newman, M.E.J.: Power-law distributions in empirical data. SIAM Rev. 51(4), 661–703 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  9. Erdős, P., Rényi, A.: On the evolution of random graphs. Publ. Math. Inst. Hung. Acad. Sci 5(1), 17–60 (1960)

    MathSciNet  MATH  Google Scholar 

  10. Gabielkov, M., Legout, A.: The complete picture of the Twitter social graph. In: Proceedings on CoNEXT Student Workshop, pp. 19–20. ACM (2012)

    Google Scholar 

  11. Ghoshal, G., Newman, M.E.J.: Growing distributed networks with arbitrary degree distributions. Eur. Phys. J. B 58(2), 175–184 (2007)

    Article  Google Scholar 

  12. Giroire, F., Pérennes, S., Trolliet, T.: A random growth model with any real or theoretical degree distribution. arXiv preprint arXiv:2008.03831 (2020)

    Google Scholar 

  13. Gjoka, M., Kurant, M., Butts, C.T., Markopoulou, A.: Walking in Facebook: a case study of unbiased sampling of OSNs. In: IEEE INFOCOM (2010)

    Google Scholar 

  14. Jóhannesson, G., Björnsson, G., Gudmundsson, E.H.: Afterglow light curves and broken power laws: a statistical study. Astrophys. J. Lett. 640(1), L5 (2006)

    Google Scholar 

  15. Leskovec, J., Horvitz, E.: Planetary-scale views on a large instant-messaging network. In: Proceedings of the 17th International Conference on World Wide Web (2008)

    Google Scholar 

  16. Lima-Mendez, G., van Helden, J.: The powerful law of the power law and other myths in network biology. Mol. BioSyst. 5(12), 1482–1493 (2009)

    Article  Google Scholar 

  17. Myers, S.A., Sharma, A., Gupta, P., Lin, J.: Information network or social network?: The structure of the Twitter follow graph. In: Proceedings of the 23rd International Conference on World Wide Web, pp. 493–498. ACM (2014)

    Google Scholar 

  18. Newman, M.E.J., Strogatz, S.H., Watts, D.J.: Random graphs with arbitrary degree distributions and their applications. Phys. Rev. E 64, 026118 (2001)

    Article  Google Scholar 

  19. Pržulj, N.: Biological network comparison using graphlet degree distribution. Bioinformatics 23(2), e177–e183 (2007)

    Article  Google Scholar 

  20. Sallaberry, A., Zaidi, F., Melançon, G.: Model for generating artificial social networks having community structures with small-world and scale-free properties. Soc. Netw. Anal. Min. 3(3), 597–609 (2013)

    Article  Google Scholar 

  21. Seshadri, M., Machiraju, S., Sridharan, A., Bolot, J., Faloutsos, C., Leskove, J.: Mobile call graphs: beyond power-law and lognormal distributions. In: ACM SIGKDD, pp. 596–604 (2008)

    Google Scholar 

  22. Stephen, A.T., Toubia, O.: Explaining the power-law degree distribution in a social commerce network. Soc. Netw. 31(4), 262–270 (2009)

    Article  Google Scholar 

  23. Trolliet, T., Cohen, N., Giroire, F., Hogie, L., Pérennes, S.: Interest clustering coefficient: a new metric for directed networks like Twitter. arXiv preprint arXiv:2008.00517 (2020)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Thibaud Trolliet .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Giroire, F., Pérennes, S., Trolliet, T. (2021). A Random Growth Model with Any Real or Theoretical Degree Distribution. In: Benito, R.M., Cherifi, C., Cherifi, H., Moro, E., Rocha, L.M., Sales-Pardo, M. (eds) Complex Networks & Their Applications IX. COMPLEX NETWORKS 2020 2020. Studies in Computational Intelligence, vol 944. Springer, Cham. https://doi.org/10.1007/978-3-030-65351-4_35

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-65351-4_35

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-65350-7

  • Online ISBN: 978-3-030-65351-4

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics