Skip to main content

Learning Vaccine Allocation from Simulations

  • 2227 Accesses

Part of the Studies in Computational Intelligence book series (SCI,volume 943)


We address the problem of reducing the spread of an epidemic over a contact network by vaccinating a limited number of nodes that represent individuals or agents.

We propose a Sim-ulation-based vaccine allocation method (Simba), a combination of (i) numerous repetitions of an efficient Monte-Carlo simulation, (ii) a PageRank-type influence analysis on an empirical transmission graph which is learned from the simulations, and (iii) discrete stochastic optimization.

Our method scales very well with the size of the network and is suitable for networks with millions of nodes. Moreover, in contrast to most approaches that are model-agnostic approaches and solely perform graph-analysis on the contact graph, the stochastic simulations explicitly take the exact diffusion dynamics of the epidemic into account. Thereby, we make our vaccination strategy sensitive to the specific clinical and transmission parameters of the epidemic.


  • SIR Model
  • Vaccination allocation
  • Networked epidemic spreading
  • Control of epidemics
  • Network robustness and resilience

This is a preview of subscription content, access via your institution.

Buying options

USD   29.95
Price excludes VAT (USA)
  • DOI: 10.1007/978-3-030-65347-7_36
  • Chapter length: 12 pages
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
USD   349.00
Price excludes VAT (USA)
  • ISBN: 978-3-030-65347-7
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
Softcover Book
USD   449.99
Price excludes VAT (USA)
Hardcover Book
USD   449.99
Price excludes VAT (USA)
Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.


  1. 1.


  1. Ball, F., Sirl, D., Trapman, P.: Analysis of a stochastic sir epidemic on a random network incorporating household structure. Math. Biosci. 224(2), 53–73 (2010)

    MathSciNet  MATH  CrossRef  Google Scholar 

  2. Cota, W., Ferreira, S.C.: Optimized Gillespie algorithms for the simulation of Markovian epidemic processes on large and heterogeneous networks. Comput. Phys. Commun. 219, 303–312 (2017)

    MATH  CrossRef  Google Scholar 

  3. Gan, C., Yang, X., Liu, W., Zhu, Q., Zhang, X.: Propagation of computer virus under human intervention: a dynamical model. Discrete Dynam. Natu. Soc. 2012 (2012)

    Google Scholar 

  4. Goltsev, A., De Abreu, F., Dorogovtsev, S., Mendes, J.: Stochastic cellular automata model of neural networks. Phys. Rev. E 81(6), 061921 (2010)

    MathSciNet  CrossRef  Google Scholar 

  5. Grossmann, G., Backenköhler, M., Wolf, V.: Importance of interaction structure and stochasticity for epidemic spreading: a covid-19 case study. ResearchGate (2020).

  6. Großmann, G., Wolf, V.: Rejection-based simulation of stochastic spreading processes on complex networks. In: International Workshop on Hybrid Systems Biology, pp. 63–79. Springer (2019)

    Google Scholar 

  7. Jeh, G., Widom, J.: Scaling personalized web search. In: Proceedings of the 12th International Conference on World Wide Web, pp. 271–279 (2003)

    Google Scholar 

  8. Khurana, P., Kumar, D.: Sir model for fake news spreading through whatsapp. In: Proceedings of 3rd International Conference on Internet of Things and Connected Technologies (ICIoTCT), pp. 26–27 (2018)

    Google Scholar 

  9. Kiss, I.Z., Miller, J.C., Simon, P.L., et al.: Mathematics of Epidemics on Networks. vol. 598. Springer, Cham (2017)

    Google Scholar 

  10. Kitsak, M., Gallos, L.K., Havlin, S., Liljeros, F., Muchnik, L., Stanley, H.E., Makse, H.A.: Identification of influential spreaders in complex networks. Nat. Phys. 6(11), 888 (2010)

    CrossRef  Google Scholar 

  11. May, R.M., Arinaminpathy, N.: Systemic risk: the dynamics of model banking systems. J. R. Soc. Interface 7(46), 823–838 (2009)

    CrossRef  Google Scholar 

  12. Nowzari, C., Preciado, V.M., Pappas, G.J.: Analysis and control of epidemics: a survey of spreading processes on complex networks. IEEE Control Syst. Mag. 36(1), 26–46 (2016)

    MathSciNet  CrossRef  Google Scholar 

  13. Page, L., Brin, S., Motwani, R., Winograd, T.: The pagerank citation ranking: bringing order to the web. Technical report 1999-66, Stanford InfoLab, November 1999., previous number = SIDL-WP-1999-0120

  14. Prakash, B.A., Chakrabarti, D., Valler, N.C., Faloutsos, M., Faloutsos, C.: Threshold conditions for arbitrary cascade models on arbitrary networks. Knowl. Inf. Syst. 33(3), 549–575 (2012)

    CrossRef  Google Scholar 

  15. Prakash, B.A., Tong, H., Valler, N., Faloutsos, M., Faloutsos, C.: Virus propagation on time-varying networks: theory and immunization algorithms. In: Joint European Conference on Machine Learning and Knowledge Discovery in Databases, pp. 99–114. Springer (2010)

    Google Scholar 

  16. Sambaturu, P., Vullikanti, A.: Designing robust interventions to control epidemic outbreaks. In: International Conference on Complex Networks and Their Applications, pp. 469–480. Springer (2019)

    Google Scholar 

  17. Schneider, C.M., Mihaljev, T., Havlin, S., Herrmann, H.J.: Suppressing epidemics with a limited amount of immunization units. Phys. Rev. E 84(6), 061911 (2011)

    CrossRef  Google Scholar 

  18. Song, C., Hsu, W., Lee, M.L.: Node immunization over infectious period. In: Proceedings of the 24th ACM International on Conference on Information and Knowledge Management, pp. 831–840 (2015)

    Google Scholar 

  19. Stewart, G., Miller, J.: Methods of simultaneous iteration for calculating eigenvectors of matrices. Top. Numer. Anal. II, 169–185 (1975)

    Google Scholar 

  20. Tong, H., Prakash, B.A., Tsourakakis, C., Eliassi-Rad, T., Faloutsos, C., Chau, D.H.: On the vulnerability of large graphs. In: 2010 IEEE International Conference on Data Mining, pp. 1091–1096. IEEE (2010)

    Google Scholar 

  21. Wijayanto, A.W., Murata, T.: Flow-aware vertex protection strategy on large social networks. In: 2017 IEEE/ACM International Conference on Advances in Social Networks Analysis and Mining (ASONAM), pp. 58–63. IEEE (2017)

    Google Scholar 

  22. Wijayanto, A.W., Murata, T.: Learning adaptive graph protection strategy on dynamic networks via reinforcement learning. In: 2018 IEEE/WIC/ACM International Conference on Web Intelligence (WI), pp. 534–539. IEEE (2018)

    Google Scholar 

  23. Wijayanto, A.W., Murata, T.: Effective and scalable methods for graph protection strategies against epidemics on dynamic networks. Appl. Netw. Sci. 4(1), 18 (2019)

    CrossRef  Google Scholar 

  24. Zhang, Y., Prakash, B.A.: Data-aware vaccine allocation over large networks. ACM Trans. Knowl. Discov. Data (TKDD) 10(2), 1–32 (2015)

    Google Scholar 

Download references


This work was partially funded by the DFG project MULTIMODE.

Author information

Authors and Affiliations


Corresponding author

Correspondence to Gerrit Großmann .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and Permissions

Copyright information

© 2021 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Verify currency and authenticity via CrossMark

Cite this paper

Großmann, G., Backenköhler, M., Klesen, J., Wolf, V. (2021). Learning Vaccine Allocation from Simulations. In: Benito, R.M., Cherifi, C., Cherifi, H., Moro, E., Rocha, L.M., Sales-Pardo, M. (eds) Complex Networks & Their Applications IX. COMPLEX NETWORKS 2020 2020. Studies in Computational Intelligence, vol 943. Springer, Cham.

Download citation

  • DOI:

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-65346-0

  • Online ISBN: 978-3-030-65347-7

  • eBook Packages: EngineeringEngineering (R0)