Skip to main content

Introduction

  • Chapter
  • First Online:
String Field Theory

Part of the book series: Lecture Notes in Physics ((LNP,volume 980))

Abstract

In this chapter, we introduce the main motivations for studying string theory, and why it is important to design a string field theory. After describing the central features of string theory, we describe the most important concepts of the worldsheet formulation. Then, we explain the reasons leading to string field theory (SFT) and outline the ideas which will be discussed in the rest of the book.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 44.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 59.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    There are also indications that a theory of membranes (2-branes) in 10 + 1 dimensions, called M-theory, should exist. No direct and satisfactory description of the latter has been found and we will thus focus on string theory in this book.

  2. 2.

    Entering in the details would take us too far away from the main topic of this book. Some of the problems found when dealing with (p > 2)-branes are: how to define a Wick rotation for 3-manifolds, the presence of Lorentz anomalies in target spacetime, problems with the spectrum, lack of renormalizability, impossibility to gauge-fix the worldvolume metric [1,2,3,4,5,6,7, 13, 16,17,18, 44, 58, 61,62,63, 71, 78].

  3. 3.

    We focus mainly on the bosonic string theory, leaving aside the superstring, except when differences are important.

  4. 4.

    In the introduction, we set α′ = 1.

  5. 5.

    These conditions exclude the cases of free theories and higher-spin theories.

  6. 6.

    The case N L < N R is identical up to exchange of the left- and right-moving sectors.

  7. 7.

    We ignore unoriented strings in this discussion. The associated worldsheets can have cross-caps which make the surfaces non-orientables.

  8. 8.

    For simplicity we focus on closed string amplitudes in this section.

  9. 9.

    There is a caveat to this statement: UV divergences reappear in string field theory in Lorentzian signature due to the way the theory is formulated. The solution requires a generalization of the Wick rotation.

    Moreover, this does not hold for open strings whose moduli spaces contain those regions: in this case, the divergences are reinterpreted in terms of closed strings propagating.

  10. 10.

    Such spurious singularities are also found in supergravity.

  11. 11.

    The on-shell condition is a consequence of the BRST and conformal invariance. While the first will be given up, the second will be maintained to facilitate the computations.

References

  1. I. Bars, First massive level and anomalies in the supermembrane. Nucl. Phys. B 308(2), 462–476 (1988). https://doi.org/10.1016/0550-3213(88)90573-1

    Article  ADS  MathSciNet  Google Scholar 

  2. I. Bars, Is there a unique consistent unified theory based on extended objects? (1988), pp. 693–698. https://inspirehep.net/literature/264587

  3. I. Bars, Issues of topology and the spectrum of membranes, pp. 209–212, Jan 1990. https://inspirehep.net/literature/285041

  4. I. Bars, Membrane symmetries and anomalies. Nucl. Phys. B 343(2), 398–417 (1990). https://doi.org/10.1016/0550-3213(90)90476-T

    Article  ADS  MathSciNet  Google Scholar 

  5. I. Bars, C.N. Pope, Anomalies in super P-branes. Class. Quantum Gravity 5(9), 1157 (1988). https://doi.org/10.1088/0264-9381/5/9/002

  6. I. Bars, C.N. Pope, E. Sezgin, Massless spectrum and critical dimension of the supermembrane. Phys. Lett. B 198(4), 455–460 (1987). https://doi.org/10.1016/0370-2693(87)90899-9

    Article  ADS  MathSciNet  Google Scholar 

  7. I. Bars, C.N. Pope, E. Sezgin, Central extensions of area preserving membrane algebras. Phys. Lett. B 210(1), 85–91 (1988). https://doi.org/10.1016/0370-2693(88)90354-1

    Article  ADS  MathSciNet  Google Scholar 

  8. N. Berkovits, Super-Poincare invariant superstring field theory. Nucl. Phys. B 450(1–2), 90–102 (1995). https://doi.org/10.1016/0550-3213(95)00259-U. arXiv: hep-th/9503099

  9. N. Berkovits, Y. Okawa, B. Zwiebach, WZW-like action for heterotic string field theory. J. High Energy Phys. 2004(11), 038–038 (2004). https://doi.org/10.1088/1126-6708/2004/11/038. arXiv: hep-th/0409018

  10. S. Chakrabarti, S.P. Kashyap, B. Sahoo, A. Sen, M. Verma, Subleading soft theorem for multiple soft gravitons. J. High Energy Phys. 2017(12) (2017). https://doi.org/10.1007/JHEP12(2017)150. arXiv: 1707.06803

  11. M. Cho, S. Collier, X. Yin, Strings in Ramond-Ramond backgrounds from the Neveu-Schwarz-Ramond formalism, Oct 2018. arXiv: 1811.00032

    Google Scholar 

  12. K. Costello, B. Zwiebach, Hyperbolic string vertices, Aug 2019. arXiv: 1909.00033

    Google Scholar 

  13. J.A. de Azcárraga, J.M. Izquierdo, P.K. Townsend, Classical anomalies of supersymmetric extended objects. Phys. Lett. B 267(3), 366–373 (1991). https://doi.org/10.1016/0370-2693(91)90947-O

    Article  ADS  MathSciNet  Google Scholar 

  14. C. de Lacroix, H. Erbin, S.P. Kashyap, A. Sen, M. Verma, Closed superstring field theory and its applications. Int. J. Mod. Phys. A 32(28n29), 1730021 (2017). https://doi.org/10.1142/S0217751X17300216. arXiv: 1703.06410

  15. C. de Lacroix, H. Erbin, A. Sen, Analyticity and crossing symmetry of superstring loop amplitudes. J. High Energy Phys. 2019(5), 139 (2019). https://doi.org/10.1007/JHEP05(2019)139. arXiv: 1810.07197

  16. B. de Wit, J. Hoppe, H. Nicolai, On the quantum mechanics of supermembranes. Nucl. Phys. B 305(4), 545–581 (1988). https://doi.org/10.1016/0550-3213(88)90116-2

    Article  ADS  MathSciNet  Google Scholar 

  17. B. de Wit, M. Lüscher, H. Nicolai, The supermembrane is unstable. Nucl. Phys. B 320(1), 135–159 (1989). https://doi.org/10.1016/0550-3213(89)90214-9

    Article  ADS  MathSciNet  Google Scholar 

  18. M.J. Duff, T. Inami, C.N. Pope, E. Sezgin, K.S. Stelle, Semiclassical quantization of the supermembrane. Nucl. Phys. B 297(3), 515–538 (1988). https://doi.org/10.1016/0550-3213(88)90316-1

    Article  ADS  MathSciNet  Google Scholar 

  19. H. Erbin, C. Maccaferri, J. Vošmera, Localization of effective actions in heterotic string field theory. J. High Energy Phys. 2020(2), 59 (2020). https://doi.org/10.1007/JHEP02(2020)059. arXiv: 1912.05463

  20. T. Erler, Relating Berkovits and A ∞ superstring field theories; large Hilbert space perspective. J. High Energy Phys. 1602, 121 (2015). https://doi.org/10.1007/JHEP02(2016)121. arXiv: 1510.00364

  21. T. Erler, Relating Berkovits and A∞ superstring field theories; small Hilbert space perspective. J. High Energy Phys. 1510, 157 (2015). https://doi.org/10.1007/JHEP10(2015)157. arXiv: 1505.02069

  22. T. Erler, Superstring field theory and the Wess-Zumino-Witten action. J. High Energy Phys. 2017(10), 57 (2017). https://doi.org/10.1007/JHEP10(2017)057. arXiv: 1706.02629

  23. T. Erler, Supersymmetry in open superstring field theory. J. High Energy Phys. 2017(5), 113 (2017). https://doi.org/10.1007/JHEP05(2017)113. arXiv: 1610.03251

  24. T. Erler, Four lectures on analytic solutions in open string field theory, Dec 2019. arXiv: 1912.00521

    Google Scholar 

  25. T. Erler, Four lectures on closed string field theory. Phys. Rep. 851, S0370157320300132 (2020). https://doi.org/10.1016/j.physrep.2020.01.003. arXiv: 1905.06785

  26. T. Erler, S. Konopka, Vertical integration from the Large Hilbert space. J. High Energy Phys. 2017(12), 112 (2017). https://doi.org/10.1007/JHEP12(2017)112. arXiv: 1710.07232

  27. T. Erler, C. Maccaferri, String field theory solution for any open string background. J. High Energy Phys. 2014(10), 29 (2014). https://doi.org/10.1007/JHEP10(2014)029. arXiv: 1406.3021

  28. T. Erler, C. Maccaferri, String field theory solution for any open string background. II. J. High Energy Phys. 2020(1), 21 (2020). https://doi.org/10.1007/JHEP01(2020)021. arXiv: 1909.11675

  29. T. Erler, S. Konopka, I. Sachs, NS-NS sector of closed superstring field theory. J. High Energy Phys. 2014(8), 158 (2014). https://doi.org/10.1007/JHEP08(2014)158. arXiv: 1403.0940

  30. T. Erler, S. Konopka, I. Sachs, Resolving Witten’s superstring field theory. J. High Energy Phys. 2014(4), 150 (2014). https://doi.org/10.1007/JHEP04(2014)150. arXiv: 1312.2948

  31. T. Erler, S. Konopka, I. Sachs, Ramond equations of motion in superstring field theory. J. High Energy Phys. 2015(11), 199 (2015). https://doi.org/10.1007/JHEP11(2015)199. arXiv: 1506.05774

  32. T. Erler, Y. Okawa, T. Takezaki, A ∞ structure from the Berkovits formulation of open superstring field theory, May 2015. arXiv: 1505.01659

    Google Scholar 

  33. T. Erler, Y. Okawa, T. Takezaki, Complete action for open superstring field theory with cyclic A ∞ structure. J. High Energy Phys. 2016(8), 12 (2016). https://doi.org/10.1007/JHEP08(2016)012. arXiv: 1602.02582

  34. P. Goddard, J. Goldstone, C. Rebbi, C.B. Thorn, Quantum dynamics of a massless relativistic string. Nucl. Phys. B 56(1), 109–135 (1973). https://doi.org/10.1016/0550-3213(73)90223-X

    Article  ADS  Google Scholar 

  35. K. Goto, H. Kunitomo, Construction of action for heterotic string field theory including the Ramond sector, June 2016. arXiv: 1606.07194

    Google Scholar 

  36. M. Headrick, B. Zwiebach, Convex programs for minimal-area problems, June 2018. arXiv: 1806.00449

    Google Scholar 

  37. M. Headrick, B. Zwiebach, Minimal-area metrics on the Swiss cross and punctured torus. Commun. Math. Phys. 24, 1–57 (2020). https://doi.org/10.1007/s00220-020-03734-z. arXiv: 1806.00450

  38. Y. Iimori, T. Noumi, Y. Okawa, S. Torii, From the Berkovits formulation to the Witten formulation in open superstring field theory. J. High Energy Phys. 2014(3), 44 (2014). https://doi.org/10.1007/JHEP03(2014)044. arXiv: 1312.1677

  39. N. Ishibashi, Multiloop amplitudes of light-cone gauge string field theory for type II superstrings, Oct 2018

    Google Scholar 

  40. N. Ishibashi, K. Murakami, Multiloop amplitudes of light-cone Gauge Bosonic string field theory in noncritical dimensions. J. High Energy Phys. 2013(9), 53 (2013). https://doi.org/10.1007/JHEP09(2013)053. arXiv: 1307.6001

  41. N. Ishibashi, K. Murakami, Worldsheet theory of light-cone Gauge noncritical strings on higher genus Riemann surfaces. J. High Energy Phys. 2016(6), 87 (2016). https://doi.org/10.1007/JHEP06(2016)087. arXiv: 1603.08337

  42. N. Ishibashi, K. Murakami, Multiloop amplitudes of light-cone Gauge superstring field theory: odd spin structure contributions. J. High Energy Phys. 2018(3), 63 (2018). https://doi.org/10.1007/JHEP03(2018)063. arXiv: 1712.09049

  43. M. Kaku, Introduction to Superstrings and M-Theory (Springer, Berlin, 1999)

    Book  Google Scholar 

  44. K. Kikkawa, M. Yamasaki, Can the membrane be a unification model? Prog. Theor. Phys. 76(6), 1379–1389 (1986). https://doi.org/10.1143/PTP.76.1379

    Article  ADS  MathSciNet  Google Scholar 

  45. S. Konopka, I. Sachs, Open superstring field theory on the restricted Hilbert space. J. High Energy Phys. 2016(4), 1–12 (2016). https://doi.org/10.1007/JHEP04(2016)164. arXiv: 1602.02583

  46. M. Kroyter, Y. Okawa, M. Schnabl, S. Torii, B. Zwiebach, Open superstring field theory I: Gauge fixing, ghost structure, and propagator. J. High Energy Phys. 2012(3), 30 (2012). https://doi.org/10.1007/JHEP03(2012)030. arXiv: 1201.1761

  47. M. Kudrna, C. Maccaferri, BCFT moduli space in level truncation. J. High Energy Phys. 2016(4), 57 (2016). https://doi.org/10.1007/JHEP04(2016)057. arXiv: 1601.04046

  48. M. Kudrna, M. Schnabl, Universal solutions in open string field theory, Dec 2018. arXiv: 1812.03221

    Google Scholar 

  49. M. Kudrna, T. Masuda, Y. Okawa, M. Schnabl, K. Yoshida, Gauge-invariant observables and marginal deformations in open string field theory. J. High Energy Phys. 2013(1), 103 (2013)

    Google Scholar 

  50. H. Kunitomo, First-order equations of motion for heterotic string field theory. Prog. Theor. Exp. Phys. 2014(9), 93B07–0 (2014). https://doi.org/10.1093/ptep/ptu125. arXiv: 1407.0801

  51. H. Kunitomo, The Ramond sector of heterotic string field theory. Prog. Theor. Exp. Phys. 2014(4), 43B01–0 (2014). https://doi.org/10.1093/ptep/ptu032. arXiv: 1312.7197

  52. H. Kunitomo, Symmetries and Feynman rules for Ramond sector in heterotic string field theory. Prog. Theor. Exp. Phys. 2015(9), 093B02 (2015). https://doi.org/10.1093/ptep/ptv117. arXiv: 1506.08926

  53. H. Kunitomo, Space-time supersymmetry in WZW-like open superstring field theory. Prog. Theor. Exp. Phys. 2017(4), 043B04 (2017). https://doi.org/10.1093/ptep/ptx028. arXiv: 1612.08508

  54. H. Kunitomo, Y. Okawa, Complete action for open superstring field theory. Prog. Theor. Exp. Phys. 2016(2), 023B01 (2016). https://doi.org/10.1093/ptep/ptv189. arXiv: 1508.00366

  55. H. Kunitomo, T. Sugimoto, Heterotic string field theory with cyclic L-infinity structure. Prog. Theor. Exp. Phys. 2019(6), 063B02 (2019). https://doi.org/10.1093/ptep/ptz051. arXiv: 1902.02991

  56. H. Kunitomo, T. Sugimoto, Type II superstring field theory with cyclic L-infinity structure, March 2020. arXiv: 1911.04103.

    Google Scholar 

  57. A. Laddha, A. Sen, Sub-subleading soft graviton theorem in generic theories of quantum gravity. J. High Energy Phys. 2017(10), 065 (2017). https://doi.org/10.1007/JHEP10(2017)065. arXiv: 1706.00759

  58. H. Luckock, I. Moss, The quantum geometry of random surfaces and spinning membranes. Class. Quantum Gravity 6(12), 1993–2027 (1989). https://doi.org/10.1088/0264-9381/6/12/025

    Article  ADS  MathSciNet  Google Scholar 

  59. C. Maccaferri, A. Merlano, Localization of effective actions in open superstring field theory. J. High Energy Phys. 2018(3), 112 (2018). https://doi.org/10.1007/JHEP03(2018)112. arXiv: 1801.07607

  60. C. Maccaferri, A. Merlano, Localization of effective actions in open superstring field theory: small Hilbert space. J. High Energy Phys. 1906, 101 (2019). https://doi.org/10.1007/JHEP06(2019)101. arXiv: 1905.04958

  61. U. Marquard, M. Scholl, Conditions of the embedding space of P-branes from their constraint algebras. Phys. Lett. B 209(4), 434–440 (1988). https://doi.org/10.1016/0370-2693(88)91169-0

    Article  ADS  MathSciNet  Google Scholar 

  62. U. Marquard, M. Scholl, Lorentz algebra and critical dimension for the bosonic membrane. Phys. Lett. B 227(2), 227–233 (1989). https://doi.org/10.1016/S0370-2693(89)80027-9

    Article  ADS  MathSciNet  Google Scholar 

  63. U. Marquard, R. Kaiser, M. Scholl, Lorentz algebra and critical dimension for the supermembrane. Phys. Lett. B 227(2), 234–238 (1989). https://doi.org/10.1016/S0370-2693(89)80028-0

    Article  ADS  MathSciNet  Google Scholar 

  64. S.F. Moosavian, R. Pius, Hyperbolic geometry of superstring perturbation theory, March 2017. arXiv: 1703.10563

    Google Scholar 

  65. S.F. Moosavian, R. Pius, Hyperbolic geometry and closed bosonic string field theory I: the string vertices via hyperbolic Riemann surfaces. J. High Energy Phys. 1908, 157 (2019). arXiv: 1706.07366

    Google Scholar 

  66. S.F. Moosavian, R. Pius, Hyperbolic geometry and closed bosonic string field theory II: the rules for evaluating the quantum BV master action. J. High Energy Phys. 1908, 177 (2019). arXiv: 1708.04977

    Google Scholar 

  67. S.F. Moosavian, Y. Zhou, On the existence of heterotic-string and type-II-superstring field theory vertices, Nov 2019. arXiv: 1911.04343

    Google Scholar 

  68. S.F. Moosavian, A. Sen, M. Verma, Superstring field theory with open and closed strings. J. High Energy Phys. 2001, 183 (2020). arXiv:1907.10632

    Google Scholar 

  69. K. Ohmori, Y. Okawa, Open superstring field theory based on the supermoduli space. J. High Energy Phys. 2018(4), 35 (2018). https://doi.org/10.1007/JHEP04(2018)035. arXiv: 1703.08214

  70. Y. Okawa, B. Zwiebach, Heterotic string field theory. J. High Energy Phys. 2004(07), 042–042 (2004). https://doi.org/10.1088/1126-6708/2004/07/042. arXiv: hep-th/0406212

  71. F. Paccanoni, P. Pasti, M. Tonin, Some remarks on the consistency of quantum supermembranes. Mod. Phys. Lett. A 4(09), 807–814 (1989). https://doi.org/10.1142/S0217732389000940

    Article  ADS  MathSciNet  Google Scholar 

  72. R. Pius, Quantum closed superstring field theory and hyperbolic geometry I: construction of string vertices, Aug 2018. arXiv: 1808.09441

    Google Scholar 

  73. R. Pius, A. Sen, Cutkosky rules for superstring field theory. J. High Energy Phys. 2016(10), 24 (2016) https://doi.org/10.1007/JHEP10(2016)024. arXiv: 1604.01783

  74. R. Pius, A. Rudra, A. Sen, Mass renormalization in string theory: general states. J. High Energy Phys. 2014(7), 62 (2014). https://doi.org/10.1007/JHEP07(2014)062. arXiv: 1401.7014

  75. R. Pius, A. Rudra, A. Sen, Mass renormalization in string theory: special states. J. High Energy Phys. 2014(7), 58 (2014). https://doi.org/10.1007/JHEP07(2014)058. arXiv: 1311.1257

  76. R. Pius, A. Rudra, A. Sen, String perturbation theory around dynamically shifted vacuum. J. High Energy Phys. 2014(10), 70 (2014). https://doi.org/10.1007/JHEP10(2014)070. arXiv: 1404.6254

  77. J. Polchinski, What is string theory? Nov 1994. arXiv: hep-th/9411028

    Google Scholar 

  78. J. Polchinski, String Theory: Volume 1, An Introduction to the Bosonic String (Cambridge University Press, Cambridge, 2005)

    MATH  Google Scholar 

  79. A. Sen, Gauge invariant 1PI effective action for superstring field theory. J. High Energy Phys. 1506, 022 (2015). https://doi.org/10.1007/JHEP06(2015)022. arXiv: 1411.7478

  80. A. Sen, Gauge invariant 1PI effective superstring field theory: inclusion of the Ramond sector. J. High Energy Phys. 2015(8), 25 (2015). https://doi.org/10.1007/JHEP08(2015)025. arXiv: 1501.00988

  81. A. Sen, Off-shell amplitudes in superstring theory. Fortschr. Phys. 63(3–4), 149–188 (2015). https://doi.org/10.1002/prop.201500002. arXiv: 1408.0571

  82. A. Sen, Supersymmetry restoration in superstring perturbation theory. J. High Energy Phys. 2015(12), 1–19 (2015). https://doi.org/10.1007/JHEP12(2015)075. arXiv: 1508.02481

  83. A. Sen, Ultraviolet and infrared divergences in superstring theory, Nov 2015. arXiv: 1512.00026

    Google Scholar 

  84. A. Sen, BV master action for heterotic and type II string field theories. J. High Energy Phys. 2016(2), 87 (2016). https://doi.org/10.1007/JHEP02(2016)087. arXiv: 1508.05387

  85. A. Sen, One loop mass renormalization of unstable particles in superstring theory. J. High Energy Phys. 2016(11), 50 (2016). https://doi.org/10.1007/JHEP11(2016)050. arXiv: 1607.06500

  86. A. Sen, Reality of superstring field theory action. J. High Energy Phys. 2016(11), 014 (2016). https://doi.org/10.1007/JHEP11(2016)014. arXiv: 1606.03455

  87. A. Sen, Unitarity of superstring field theory. J. High Energy Phys. 2016(12), 115 (2016). https://doi.org/10.1007/JHEP12(2016)115. arXiv: 1607.08244

  88. A. Sen, Equivalence of two contour prescriptions in superstring perturbation theory. J. High Energy Phys. 2017(04), 25 (2017). https://doi.org/10.1007/JHEP04(2017)025. arXiv: 1610.00443

  89. A. Sen, Soft theorems in superstring theory. J. High Energy Phys. 2017(06), 113 (2017). https://doi.org/10.1007/JHEP06(2017)113. arXiv: 1702.03934

  90. A. Sen, Subleading soft graviton theorem for loop amplitudes. J. High Energy Phys. 2017(11), 1–8 (2017). https://doi.org/10.1007/JHEP11(2017)123. arXiv: 1703.00024

  91. A. Sen, Wilsonian effective action of superstring theory. J. High Energy Phys. 2017(1), 108 (2017). https://doi.org/10.1007/JHEP01(2017)108. arXiv: 1609.00459

  92. A. Sen, Background independence of closed superstring field theory. J. High Energy Phys. 2018(2), 155 (2018). https://doi.org/10.1007/JHEP02(2018)155. arXiv: 1711.08468

  93. A. Sen, String field theory as world-sheet UV regulator. J. High Energy Phys. 2019(10), 119 (2019). https://doi.org/10.1007/JHEP10(2019)119. arXiv: 1902.00263

  94. A. Sen, D-instanton perturbation theory, May 2020. arXiv: 2002.04043

    Google Scholar 

  95. A. Sen, Fixing an ambiguity in two dimensional string theory using string field theory. J. High Energy Phys. 2020(3), 5 (2020). https://doi.org/10.1007/JHEP03(2020)005. arXiv: 1908.02782

  96. A. Sen, E. Witten, Filling the gaps with PCO’s. J. High Energy Phys. 1509, 004 (2015). https://doi.org/10.1007/JHEP09(2015)004. arXiv: 1504.00609

  97. T. Takezaki, Open superstring field theory including the Ramond sector based on the supermoduli space (2019). arXiv: 1901.02176

    Google Scholar 

  98. J. Vošmera, Generalized ADHM equations from marginal deformations in open superstring field theory. J. High Energy Phys. 2019(12), 118 (2019). https://doi.org/10.1007/JHEP12(2019)118. arXiv: 1910.00538

  99. E. Witten, Superstring perturbation theory revisited, Sept 2012. arXiv: 1209. 5461

    Google Scholar 

  100. B. Zwiebach, A First Course in String Theory, 2nd edn. (Cambridge University Press, Cambridge, 2009)

    Book  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Erbin, H. (2021). Introduction. In: String Field Theory. Lecture Notes in Physics, vol 980. Springer, Cham. https://doi.org/10.1007/978-3-030-65321-7_1

Download citation

Publish with us

Policies and ethics