Skip to main content

Numerical Simulation Results of the Optimal Estimation Algorithm for a Turn Table Angular Velocity

  • Conference paper
  • First Online:
Recent Research in Control Engineering and Decision Making (ICIT 2020)

Abstract

The article presents the results of numerical modeling of the accuracy of measuring and reproducing angular velocity with precision rotary stand (turn table), based on all sensors included in it. A comparison of the estimates of the angular velocity of the turntable of the stand with three different methods is performed. The results of modeling the dynamics of the rotary sstand demonstrate a significant difference between the errors in determining the angular velocity of the platform of the stand by measuring quantities from various sensors included in its composition.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Sinelnikov, A.E., Kudryavtsev, V.N., Pavlov, P.A.: A new Russian standard in the field of low-frequency motion quantities measurements. In: Proceedings 9-th St.-Petersburg International Conference on Integrated Navigation Systems, ICINS 2002, St.-Petersburg, Russia, pp. 221–229 (2002)

    Google Scholar 

  2. Probst, R., Wittekopf, R., Krause, M., Dangschat, H., Ernst, A.: The new PTB angle comparator. Measure. Sci. Technol. 9, 1059–1066 (1998)

    Article  Google Scholar 

  3. Watanabe, T., Fujimoto, H., Nakayama, K., Masuda, T., Kajitani, M.: Automatic high precision calibration system for angle encoder. In: Proceedings SPIE, vol. 4401, no. 1, 267–274 (2003); vol. 5190, no. 2, 400–409 (2001)

    Google Scholar 

  4. Velikoseltsev, A., Boronachin, A., Tkachenko, A., Schreiber, K.U., Yankovsky, A., Wells, J.-P.R.: On the application of fiber optic gyroscopes for detection of seismic rotations. J. Seismol. 16(4), 623–637 (2012)

    Article  Google Scholar 

  5. Geckeler, R.D., Krause, M., Just, A., Kranz, O., Bosse, H.: New frontiers in angle metrology at the PTB. In: Proceedings 11th Laser Metrology for Precision Measurement and Inspection in Industry 2014, Tsukuba, Japan, pp. 7–12 (2014)

    Google Scholar 

  6. Sim, P.J.: Modern Techniques in Metrology, pp. 102–121. World Scientific, Singapore (1984)

    Google Scholar 

  7. Bournashev, M.N., Filatov, Y.V., Loukianov, D.P., Pavlov, P.A., Sinelnikov, A.E.: Reproduction of plane angle unit in dynamic mode by means of ring laser and holographic optical encoder. In: Proceedings 2nd International Conference European Society for Precision Engineering and Nanotechnology, Turin, Italy, pp. 322–325 (2001)

    Google Scholar 

  8. Isaev, L.K., Sinelnikov, A.E.: Metrological problems in measuring small and ultrasmall values of parameters of motion. Measure. Techn. 41(4), 301–304 (1998)

    Article  Google Scholar 

  9. Kalihman, D.M., Kalihman, L.Y., Sadomtsev, Y.V., Polushkin, A.V., Deputatova, E.A., Ermakov, R.V., Nahov, S.F., Izmailov, L.A., Molchanov, A.V., Chirkin, M.V.: Multi-purpose precision test simulator with a digital control system for testing rate gyroscopes of different types. In: Proceedings 17th St.-Petersburg International Conference on Integrated Navigation Systems, ICINS 2010, pp. 151–156 (2010)

    Google Scholar 

  10. Ermakov, R.V., Kalihman, D.M., Kalihman, L.Y., Nakhov, S.F., Turkin, V.A., Lvov, A.A., Sadomtsev, Yu.V., Krivtsov, E.P., Yankovskiy, A.A.: Fundamentals of developing integrated digital control of precision stands with inertial sensors using signals from an angular rate sensor, accelerometer, and an optical angle sensor. In: Proceedings 23rd St.-Petersburg International Conference on Integrated Navigation Systems, ICINS 2016, pp. 361–365 (2016)

    Google Scholar 

  11. Kalikhman, D.M., Kalikhman, L.Y., Deputatova, E.A., Krainov, A.P., Krivtsov, E.P., Yankovsky, A.A., Ermakov, R.V., L’vov, A.A.: Ways of extending the measurement range and increasing the accuracy of rotary test benches with inertial sensory elements for gyroscopic devices. In: Proceedings 25-th Anniv. St.-Petersburg International Conference on Integrated Navigation Systems, St.-Petersburg, Russia, CSRI Elektropribor, pp. 460–465 (2018)

    Google Scholar 

  12. Kalikhman, D.M.: Pretcizionny`e upravliaemy`e stendy` dlia dinamicheskikh ispy`tanii` giroskopicheskikh priborov [Precision controllable stands for dynamic testing of gyroscopic instruments], Concern CSRI Elektropribor, St.-Petersburg, Russia. 296, (2008). ISBN 5-900780-82-5 (in Russian)

    Google Scholar 

  13. Deputatova, E.A., Kalikhman, D.M., Polushkin, A.V., Sadomtsev, Yu.V.: Digital stabilization of motion of precision controlled base platforms with inertial sensitive elements. II. Application of float angular velocity sensor and pendulum accelerometers. J. Comput. Syst. Sci. Int. 50(2), 309–324 (2011)

    Google Scholar 

  14. Deputatova, E.A., Kalikhman, D.M., Nikiforov, V.M., Sadomtsev, Y.V.: New generation precision motion simulators with inertial sensors and digital control. J. Comput. Syst. Sci. Int. 53(2), 275–290 (2014). https://doi.org/10.1134/S1064230714020063

    Article  MATH  Google Scholar 

  15. Deputatova, E.A., Kalikhman, D.M., Polushkin, A.V., Sadomtsev, Y.V.: Digital stabilization of motion of precision controlled base platforms with inertial sensitive elements. I. Application of float angular velocity sensor. J. Comput. Syst. Sci. Int. 50(1), 117–129 (2011)

    Google Scholar 

  16. Yankovskiy, A.A., Plotnikov, A.V., Savkin, K.B., Kozak, I.V.: Secondary standard of the plane angle: State and developmental trends. Measure. Techn. 55(7), 780–782 (2012)

    Article  Google Scholar 

  17. Ermakov, R.V., Seranova, A.A., L’vov, A.A., Kalikhman, D.M.: Optimal estimation of the motion parameters of a precision rotating stand by maximum likelihood method. Measure. Techn. 62(2), 139–146 (2019). https://doi.org/10.1007/s11018-019-01598-x

    Article  Google Scholar 

  18. Ermakov, R.V., Kalihman, D.M., L’vov, A.A., Sokolov, D.N.: Angular velocity estimation of rotary table bench using aggregate information from the sensors of different physical nature. In: Proceedings 2017 IEEE Russia Section Young Researchers in Electrical and Electronic Engineering Conference, pp. 820–825 (2017)

    Google Scholar 

  19. Ermakov, R.V., Kalikhman, D.M., Kondratov, D.V., Lvov, A.A.: Errors’ distribution laws analysis of sensors for the rotary tables. Matematicheskoye modelirovaniye, komp’yuternyy i naturnyy eksperiment v yestestvennykh naukakh [Mathematical modeling, computer and natural experiment in the natural sciences], 3, 9–16. (2016). http://mathmod.esrae.ru/3-19. (in Russian)

  20. Gill, P.E., Murray, W., Wright, M.H.: Practical Optimization. Academic Press, London (1981)

    MATH  Google Scholar 

  21. Grebennikov, V.I., Kalikhman, L.Y., Kalikhman, D.M., Nahov S.F., Skorobogatov, V.V., Sapozhnikov, A.I., Smirnov, E.S.: Vibration-resistant pendulum linear acceleration meter with digital feedback. In: Proceedings 22nd St.-Petersburg International Conference on Integrated Navigation Systems, ICINS 2015, St. Petersburg, CSRI Elektropribor, pp. 368–376 (2015)

    Google Scholar 

  22. Ermakov, R.V., Popov, A.N., Scripal, E.N., Kalikhman, D.M., Kondratov, D.V., L’vov, A.A.: Methods for testing and test results of inertial sensors intended for operation in helicopter-type aircraft. In: Proceedings 24-th St. Petersburg International Conference on Integrated Navigation Systems, St. Petersburg, CSRI Elektropribor, pp. 335–338 (2017)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Roman Ermakov .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Ermakov, R., L’vov, A., Seranova, A., Melnikova, N., Umnova, E. (2021). Numerical Simulation Results of the Optimal Estimation Algorithm for a Turn Table Angular Velocity. In: Dolinina, O., et al. Recent Research in Control Engineering and Decision Making. ICIT 2020. Studies in Systems, Decision and Control, vol 337. Springer, Cham. https://doi.org/10.1007/978-3-030-65283-8_9

Download citation

Publish with us

Policies and ethics