Skip to main content

Dynamic Error Reduction via Continuous Robot Control Using the Neural Network Technique

  • Conference paper
  • First Online:
Recent Research in Control Engineering and Decision Making (ICIT 2020)

Abstract

The article presents an algorithm for planning the trajectory which goes exactly through two given points: the initial and end points. By complicating the structure of the neural network, we can plan the trajectory that will go through a specified number of points with regard to additional conditions. It is obvious that with the increase of the problem complexity, the accuracy of the solution to the problem decreases. The suggested recommendations reduce the possibility of errors in the neural network solutions.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Yurevich E.I.: Osnovy robototekhniki [Robotics Basics], 2 izd., SPb.: BHV, 302 p., Peterburg, (2005), (in Russian)

    Google Scholar 

  2. Fu, K.S., Gonzalez, R.C., Lee C.S.G.: Robotics: Control, Sensing Vision and Intelligence, 580 p., Mcgraw-Hill Book Company (1987)

    Google Scholar 

  3. Kozlov ,V.V., Makary’chev, V.P., Timofeev, A.V., Yurevich, E.Yu.: Dinamika upravleniya robotami [Robot control dynamics], 336 p., M.: Nauka, (1984), (in Russian)

    Google Scholar 

  4. Vukobratovic, M.: Introduction to Robotics, Springer-Verlag, 299 p. (1989)

    Google Scholar 

  5. Koren Y.: Robotics for Engineers, McGraw-Hill, 345 p., (1986)

    Google Scholar 

  6. Angeles, J.: Fundamentals of Robotic Mechanical Systems. MES, vol. 124. Springer, Cham (2002). https://doi.org/10.1007/978-3-319-01851-5

    Book  MATH  Google Scholar 

  7. Guo, X., Ma, T., Zhang, Z., Li, M.: Research on smart operation method of industrial robot based on laser sensor. In: Proceedings SPIE 11378, Nano-, Bio-, Info-Tech Sensors, and 3D Systems IV, p. 1137818 (2020). https://doi.org/10.1117/12.2558480

  8. Roth, Z.S., Mooring, B.W., Ravani, B.: An overview of robot calibration. IEEE J. Robot. Autom. 3(5), 377–385 (1987). https://doi.org/10.1109/JRA.1987.1087124

    Article  Google Scholar 

  9. Meng, Y., Zhuang, H.: Autonomous robot calibration using vision technology. Robot. Comput. Integr. Manuf. 23(4), 436–446 (2007)

    Article  Google Scholar 

  10. Du, G., Zhang, P.: Online robot calibration based on vision measurement. Robot. Comput. Integr. Manuf. 29(6), 484–492 (2013)

    Article  Google Scholar 

  11. Zhang, J., Cai, J.: Error analysis and compensation method of 6-axis industrial robot. Int. J. Smart Sens. Intell. Syst. 6(4), 1383–1389 (2013)

    Google Scholar 

  12. Kuritsky, M.M., Goldstein, M.S. (eds.) Inertial navigation, Autonomous Robot Vehicles, Cox I. J., Wilfong G. T., Eds. New York: Springer-Verlag (1990)

    Google Scholar 

  13. Leonard, J.J., Durrant-Whyte, H.F.: Directed Sonar Navigation. Kluwer Academic Press, Norwell, MA (1992)

    Book  Google Scholar 

  14. Ermakov, R.V., L’vov, A.A., Sadomtsev, Y.V.: Fundamentals of developing integrated digital control of precision stands with inertial sensors using signals from an angular rate sensor, accelerometer, and an optical angle sensor. In: Proceeding 23rd St. Petersburg International Conference on Integrated Navigation Systems, St. Petersburg, CSRI Elektropribor, pp. 361–366 (2016)

    Google Scholar 

  15. Ermakov, R.V., L’vov, A.A., Sokolov, D.N., Kalihman, D.M.: Angular velocity estimation of rotary table bench using aggregate information from the sensors of different physical nature. In: Proceeding 2017 IEEE Russia Section Young Researchers in Electrical and Electronic Engineering Conference, St. Petersburg, Russia, pp. 585–589 (2017)

    Google Scholar 

  16. Ermakov, R.V., Popov, A.N., Scripal, E.N., Kalikhman, D.M., Kondratov, D.V., L’vov, A.A.: Methods for testing and test results of inertial sensors intended for operation in helicopter-type aircraft. In: Proceeding 24-th St. Petersburg International Conference on Integrated Navigation Systems, St. Petersburg, CSRI Elektropribor, pp. 335–338 (2017)

    Google Scholar 

  17. Ermakov, R.V., Seranova, A.A., L’vov, A.A., Kalikhman, D.M.: Optimal estimation of the motion parameters of a precision rotating stand by maximum likelihood method. Meas. Tech. 62(4), 139–146 (2019). https://doi.org/10.1007/s11018-019-01598-x

    Article  Google Scholar 

  18. ViCville, T., Faugeras, O.D.: Cooperation of the inertial and visual systems. In: (NATO AS1 Series, F63), pp. 339–350. Springer-Verlag, New York (1990)

    Google Scholar 

  19. Vaganay, J., Aldon, M.J.: Attitude estimation for a vehicle using inertial sensors. In: 1st IFAC International Workshop on Intellignet Autonomous Vehicles, pp. 89–94 (1993)

    Google Scholar 

  20. Barshan, B., Durrant-Whyte, H.F.: Inertial navigation systems for mobile robots. IEEE Trans. Robot. Autom. 11(3), 328–342 (1995)

    Article  Google Scholar 

  21. Borenstein, J., Koren, Y.: Motion control analysis of a mobile robot. Trans. ASME J. Dyn. Measur. Control 109 (2), 73–79 (1986)

    Google Scholar 

  22. Feng, L., Koren, Y., Borenstein, J.: Cross-Coupling Motion Controller for Mobile Robots. IEEE Control Syst. Mag. 13(6), 35–43 (1993)

    Article  Google Scholar 

  23. Ojeda, L., Borenstein, J.: FLEXnav: Fuzzy logic expert rule-based position estimation for mobile robots on rugged Terrain. In: Proceeding 2002 IEEE International Conference on Robotics and Automation. Washington DC, USA, pp. 317–322 (2002)

    Google Scholar 

  24. Glazkov, V.P., Egorov, I.V., Pchelintseva, S.V.: Exact estimates of a neural network solution for the inverse kinematics of a manipulator. Mekhatronika, avtomatizatsiya, upravlenie 11, 12–18 (2003). (in Russian)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Stanislav Daurov .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Glazkov, V., Daurov, S., L’vov, A., Askarova, A., Kalikhman, D. (2021). Dynamic Error Reduction via Continuous Robot Control Using the Neural Network Technique. In: Dolinina, O., et al. Recent Research in Control Engineering and Decision Making. ICIT 2020. Studies in Systems, Decision and Control, vol 337. Springer, Cham. https://doi.org/10.1007/978-3-030-65283-8_15

Download citation

Publish with us

Policies and ethics