Skip to main content

The Task of Controlling Robotic Technological Complexes of Arc Welding in Unstable States

  • Conference paper
  • First Online:
Recent Research in Control Engineering and Decision Making (ICIT 2020)

Abstract

The article presents mathematical models and the control algorithm of robotic welding complexes of arc welding in the conditions of unstable conditions. A procedure for identifying unstable states for a mathematical model has been developed using the example of the Lorenz and Nose-Hoover attractors. An algorithm is proposed to prevent the system from transitioning to unstable states by implementing action plans.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Guillo, M., Dubourg, L.: Impact & improvement of tool deviation in friction stir welding: weld quality & real-time compensation on an industrial robot. Robot. Comput.-Integr. Manuf. 39, 22–31 (2016)

    Article  Google Scholar 

  2. Shultz, E.F., Cole, E.G., Smith, C.B., Zinn, M.R., Ferrier, N.J., Pfefferkorn, F.E.: Effect of compliance and travel angle on friction stir welding with gaps. J. Manuf. Sci. Eng. Trans. ASME 132(4), 0410101–0410109 (2010)

    Article  Google Scholar 

  3. Wu, J., Zhang, R., Yang, G.: Design and experiment verification of a new heavy friction-stir-weld robot for large-scale complex surface structures. Ind. Robot 42(4), 332–338 (2015)

    Article  Google Scholar 

  4. Dinham, M., Fang, G.: Autonomous weld seam identification and localisation using eye-in-hand stereo vision for robotic arc welding. Robot. Comput.-Integr. Manuf. 29(5), 288–301 (2013)

    Article  Google Scholar 

  5. Shen, H.Y., Wu, J., Lin, T., Chen, S.B.: Arc welding robot system with seam tracking and weld pool control based on passive vision. Int. J. Manuf. Technol. 39(7–8), 669–678 (2008)

    Article  Google Scholar 

  6. Miller, M., Mi, B., Kita, A., Ume, I.C.: Development of automated real-time data acquisition system for robotic weld quality monitoring. Mechatronics 12(9–10), 1259–1269 (2002)

    Article  Google Scholar 

  7. Ryberg, A., Ericsson, M., Christiansson, A.K., Eriksson, K., Nilsson, J., Larsson, M.: Stereo vision for path correction in off-line programmed robot welding. In: Proceedings of the IEEE International Conference on Industrial Technology, pp. 1700–1705 (2010)

    Google Scholar 

  8. Micallef, K., Fang, G., Dinham, M.: Automatic seam detection and path planning in robotic welding. Lecture Notes in Electrical Engineering, LNEE, vol. 88, pp. 23–32 (2011)

    Google Scholar 

  9. Agapakis, J.E., Katz, J.M., Friedman, J.M., Epstein, G.N.: Vision-aided robotic welding. An approach and a flexible implementation. Int. J. Robot. Res. 9(5), 17–34 (1990)

    Google Scholar 

  10. Ahmad, S., Luo, S.: Coordinated motion control of multiple robotic devices for welding and redundancy coordination through constrained optimization in Cartesian space. IEEE Trans. Robot. Autom. 5(4), 409–417 (1989)

    Article  Google Scholar 

  11. Liu, Y.K., Zhang, Y.M.: Toward welding robot with human knowledge: a remotely-controlled approach. IEEE Trans. Autom. Sci. Eng. 12(2), 769–774 (2015)

    Article  Google Scholar 

  12. Kim, K.Y., Kim, D.W., Nnaji, B.O.: Robot arc welding task sequencing using genetic algorithms. IIE Trans. (Inst. Ind. Eng.) 34(10), 865–880 (2002)

    Google Scholar 

  13. Stenberg, T., Barsoum, Z., Åstrand, E., Öberg, A.E., Schneider, C., Hedegård, J.: Quality control and assurance in fabrication of welded structures subjected to fatigue loading. Weld. World 61(5), 1003–1015 (2017)

    Article  Google Scholar 

  14. Sumesh, A., Rameshkumar, K., Raja, A., Mohandas, K., Santhakumari, A., Shyambabu, R.: Establishing correlation between current and voltage signatures of the arc and weld defects in GMAW process. Arab. J. Sci. Eng. 42(11), 4649–4665 (2017)

    Article  Google Scholar 

  15. Ericsson, M., Nylén, P.: A look at the optimization of robot welding speed based on process modeling. Weld. J. (Miami, Fla) 86(8), 238 (2007)

    Google Scholar 

  16. Leonardo, B.Q., Steffens, C.R., da Silva Filho, S.C., Mór, J.L., Hüttner, V., do Amaral Leivas, E., Da Rosa, V.S., da Costa Botelho, S.S.: Vision-based system for welding groove measurements for robotic welding applications. In: Proceedings - IEEE International Conference on Robotics and Automation, vol. 2016-June, pp. 5650–5655 (2016)

    Google Scholar 

  17. Fominykh, D.S., Kushnikov, V.A., Rezchikov, A.F.: Prevention unstable conditions in the welding process via robotic technological complexes. In: MATEC Web of Conferences, vol. 224, p. 01045 (2018)

    Google Scholar 

  18. Hoover, W.G.: Remark on some simple chaotic flows. Phys. Rev. E 51, 759–760 (1995)

    Article  Google Scholar 

  19. Moon, F.C.: Chaotic Vibrations. Wiley, New York (1987). 309 pp.

    MATH  Google Scholar 

  20. Andrievsky, B., Fradkov, A.: Autom. Remote Control 4, 5 (2003)

    Google Scholar 

  21. Tikhonova, O.M., Kushnikov, V.A., Fominykh, D.S. with co-authors: Mathematical model for prediction of efficiency indicators of educational activity in high school. In: Proceedings of International Conference on Information Technologies in Business and Industry, Tomsk Polytechnic University, Journal of Physics Conference Series, vol. 1015, no. UNSP 032143, Tomsk (2018)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dmitry Fominykh .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Fominykh, D. et al. (2021). The Task of Controlling Robotic Technological Complexes of Arc Welding in Unstable States. In: Dolinina, O., et al. Recent Research in Control Engineering and Decision Making. ICIT 2020. Studies in Systems, Decision and Control, vol 337. Springer, Cham. https://doi.org/10.1007/978-3-030-65283-8_1

Download citation

Publish with us

Policies and ethics