Skip to main content

Structural and Functional Genomics of Chenopodium quinoa

Part of the Compendium of Plant Genomes book series (CPG)

Abstract

Quinoa (Chenopodium quinoa Willd.), also known as ‘the mother grain’ of the Incas, is a pseudo-cereal crop originating from the Andes, mainly cultivated for its seeds and consumed in a similar way to rice and other staple grains. Although it is primarily a subsistence crop in Andean regions, quinoa is gaining international importance due to the exceptional nutritive value of its grains and its ability to maintain yields in harsh environmental conditions. As a consequence, breeding programs are rapidly expending, and a better knowledge of the structure and function of quinoa genome is becoming increasingly needed in order to support and fasten breeding efforts and make quinoa more productive and better adapted to its novel culture environments. The recent release of several novel sequence resources such as the genome reference sequence of coastal quinoa accession QQ74 and the re-sequencing of several wild and cultivated quinoas will certainly contribute to this aim. In this chapter, we review the current molecular resources available for the structural characterization of quinoa allotetraploid genome and discuss future prospects for the functional characterization of genes underlying traits of agronomic importance.

Keywords

  • Genomics
  • Transcriptomics
  • Chenopodium quinoa
  • Genome sequencing
  • Molecular markers
  • Gene expression

This is a preview of subscription content, access via your institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • DOI: 10.1007/978-3-030-65237-1_6
  • Chapter length: 25 pages
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
eBook
USD   169.00
Price excludes VAT (USA)
  • ISBN: 978-3-030-65237-1
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
Softcover Book
USD   219.99
Price excludes VAT (USA)
Hardcover Book
USD   219.99
Price excludes VAT (USA)

References

  • Adolf VI, Jacobsen S-E, Shabala S (2013) Salt tolerance mechanisms in quinoa (Chenopodium quinoa Willd.). Environ Exp Bot 92:43–54

    CAS  CrossRef  Google Scholar 

  • Aellen P, Just T (1943) Key and synopsis of the American species of the genus Chenopodium L. Am Midland Nat 30:47–76

    CrossRef  Google Scholar 

  • Balzotti MRB, Thornton JN, Maughan PJ, McClellan DA, Stevens MR, Jellen EN, Fairbanks DJ, Coleman CE (2008) Expression and evolutionary relationships of the Chenopodium quinoa 11S seed storage protein gene. Int J Plant Sci 169:281–291

    CAS  CrossRef  Google Scholar 

  • Bennetzen JL, Wang H (2014) The contributions of transposable elements to the structure, function, and evolution of plant genomes. Annu Rev Plant Biol 65:505–530

    CAS  PubMed  CrossRef  Google Scholar 

  • Bhargava A, Shukla S, Ohri D (2006) Chenopodium quinoa—An Indian perspective. Ind Crop Prod 23:73–87

    CAS  CrossRef  Google Scholar 

  • Bohm J, Messerer M, Muller HM, Scholz-Starke J, Gradogna A, Scherzer S, Maierhofer T, Bazihizina N, Zhang H, Stigloher C, Ache P, Al-Rasheid KAS, Mayer KFX, Shabala S, Carpaneto A, Haberer G, Zhu JK, Hedrich R (2018) Understanding the molecular basis of salt sequestration in epidermal bladder cells of Chenopodium quinoa. Curr Biol 28:3075+

    Google Scholar 

  • Bonifacio A (1995) Interspecific and intergeneric hybridization in chenopod species. Brigham Young University. Department of Botany and Range Sciences

    Google Scholar 

  • Bortesi L, Fischer R (2015) The CRISPR/Cas9 system for plant genome editing and beyond. Biotechnol Adv 33:41–52

    CAS  PubMed  CrossRef  Google Scholar 

  • Brenner D, Baltensperger D, Kulakow P, Lehmann J, Myers R, Slabbert M, Sleugh B (2000) Genetic resources and breeding of Amaranthus. Plant Breed Rev 19:227–285

    CAS  Google Scholar 

  • Brinegar C, Goundan S (1993) Isolation and characterization of Chenopodin, the 11 s seed storage protein of Quinoa (Chenopodium-Quinoa). J Agric Food Chem 41:182–185

    CAS  CrossRef  Google Scholar 

  • Cai XF, Jiao C, Sun HH, Wang XL, Xu CX, Fei ZJ, Wang QH (2017) The complete mitochondrial genome sequence of spinach, Spinacia oleracea L. Mitochondrial DNA B 2:339–340

    CrossRef  Google Scholar 

  • Cháb D, Kolář J, Olson MS, Štorchová H (2008) Two flowering locus T (FT) homologs in Chenopodium rubrum differ in expression patterns. Planta 228:929

    PubMed  CrossRef  CAS  Google Scholar 

  • Chaney L, Mangelson R, Ramaraj T, Jellen EN, Maughan PJ (2016) The complete chloroplast genome sequences for four Amaranthus species (Amaranthaceae). Appl Plant Sci 4

    Google Scholar 

  • Christensen S, Pratt DB, Pratt C, Nelson P, Stevens M, Jellen EN, Coleman CE, Fairbanks DJ, Bonifacio A, Maughan PJ (2007) Assessment of genetic diversity in the USDA and CIP-FAO international nursery collections of quinoa (Chenopodium quinoa Willd.) using microsatellite markers. Plant Genet Resour 5:82–95

    CAS  CrossRef  Google Scholar 

  • Clegg MT, Zurawski G (1992) Chloroplast DNA and the study of plant phylogeny: present status and future prospects. In: Molecular systematics of plants. Springer, pp 1–13

    Google Scholar 

  • Coles ND, Coleman CE, Christensen SA, Jellen EN, Stevens MR, Bonifacio A, Rojas-Beltran JA, Fairbanks DJ, Maughan PJ (2005) Development and use of an expressed sequenced tag library in quinoa (Chenopodium quinoa Willd.) for the discovery of single nucleotide polymorphisms. Plant Sci 168:439–447

    CAS  CrossRef  Google Scholar 

  • Dally N, Xiao K, Holtgräwe D, Jung C (2014) The B2 flowering time locus of beet encodes a zinc finger transcription factor. Proc Natl Acad Sci 111:10365–10370

    CAS  PubMed  CrossRef  PubMed Central  Google Scholar 

  • Danial D, Parlevliet J, Almekinders C, Thiele G (2007) Farmers’ participation and breeding for durable disease resistance in the Andean region. Euphytica 153:385–396

    CrossRef  Google Scholar 

  • del Castillo C, Winkel T, Mahy G, Bizoux J-P (2007) Genetic structure of quinoa (Chenopodium quinoa Willd.) from the Bolivian altiplano as revealed by RAPD markers. Genet Resour Crop Ev 54:897–905

    CrossRef  CAS  Google Scholar 

  • Devi RJ, Chrungoo NK (2017) Evolutionary divergence in Chenopodium and validation of SNPs in chloroplast rbcL and matk genes by allele-specific PCR for development of Chenopodium quinoa-specific markers. Crop J 5:32–42

    CrossRef  Google Scholar 

  • Dillehay TD, Quivira MP, Bonzani R, Silva C, Wallner J, Le Quesne C (2007) Cultivated wetlands and emerging complexity in south-central Chile and long distance effects of climate change. Antiquity 81:949–960

    CrossRef  Google Scholar 

  • Dodsworth S, Leitch AR, Leitch IJ (2015) Genome size diversity in angiosperms and its influence on gene space. Curr Opin Genet Dev 35:73–78

    CAS  PubMed  CrossRef  Google Scholar 

  • Dohm JC, Minoche AE, Holtgrawe D, Capella-Gutierrez S, Zakrzewski F, Tafer H, Rupp O, Sorensen T, Stracke R, Reinhardt R, Goesmann A, Kraft T, Schulz B, Stadler PF, Schmidt T, Gabaldon T, Lehrach H, Weisshaar B, Himmelbauer H (2014) The genome of the recently domesticated crop plant sugar beet (Beta vulgaris). Nature 505:546+

    Google Scholar 

  • Egawa C, Kobayashi F, Ishibashi M, Nakamura T, Nakamura C, Takumi S (2006) Differential regulation of transcript accumulation and alternative splicing of a DREB2 homolog under abiotic stress conditions in common wheat. Genes Genet Syst 81:77–91

    CAS  PubMed  CrossRef  Google Scholar 

  • Epstein E, Bloom A (2005) Mineral nutrition of plants: principles and perspectives, 2nd edn. Sinauer Association Inc., Sunderland, UK

    Google Scholar 

  • Fairbanks DJ, Burgener KW, Robison LR, Andersen WR, Ballon E (1990) Electrophoretic characterization of Quinoa seed proteins. Plant Breeding 104:190–195

    CAS  CrossRef  Google Scholar 

  • Fekih R, Takagi H, Tamiru M, Abe A, Natsume S, Yaegashi H, Sharma S, Sharma S, Kanzaki H, Matsumura H, Saitoh H, Mitsuoka C, Utsushi H, Uemura A, Kanzaki E, Kosugi S, Yoshida K, Cano L, Kamoun S, Terauchi R (2013) MutMap plus: genetic mapping and mutant identification without crossing in rice. Plos One 8

    Google Scholar 

  • Fiallos-Jurado J, Pollier J, Moses T, Arendt P, Barriga-Medina N, Morilloi E, Arahana V, Torres MD, Goossens A, Leon-Reyes A (2016) Saponin determination, expression analysis and functional characterization of saponin biosynthetic genes in Chenopodium quinoa leaves. Plant Sci 250:188–197

    CAS  PubMed  CrossRef  Google Scholar 

  • Fuentes FF, Bazile D, Bhargava A, Martinez EA (2012) Implications of farmers’ seed exchanges for on-farm conservation of quinoa, as revealed by its genetic diversity in Chile. J Agric Sci 150:702–716

    CrossRef  Google Scholar 

  • Fuentes FF, Martinez EA, Hinrichsen PV, Jellen EN, Maughan PJ (2009) Assessment of genetic diversity patterns in Chilean quinoa (Chenopodium quinoa Willd.) germplasm using multiplex fluorescent microsatellite markers. Conserv Genet 10:369–377

    CAS  CrossRef  Google Scholar 

  • Gandarillas H (1968) Caracteres botánicos más importantes para la clasificación de la quinua. Anales de la Primera convención de Quenopodiáceas quinoa–cañahua. Puno, Perú: Universidad Nacional Técnica del Altiplano, pp 41–49

    Google Scholar 

  • Gill BS, Friebe B, Endo TR (1991) Standard karyotype and nomenclature system for description of chromosome bands and structural-aberrations in wheat (Triticum-Aestivum). Genome 34:830–839

    CrossRef  Google Scholar 

  • Gomez-Pando LR, Eguiluz-de la Barra A (2013) Developing genetic variability of quinoa (Chenopodium quinoa Willd.) with gamma radiation for use in breeding programs. Am J Plant Sci 4:349

    Google Scholar 

  • Hong SY, Cheon KS, Yoo KO, Lee HO, Cho KS, Suh JT, Kim SJ, Nam JH, Sohn HB, Kim YH (2017) Complete chloroplast genome sequences and comparative analysis of Chenopodium quinoa and C. album. Front Plant Sci 8

    Google Scholar 

  • Imamura T, Takagi H, Miyazato A, Ohki S, Mizukoshi H, Mori M (2018) Isolation and characterization of the betalain biosynthesis gene involved in hypocotyl pigmentation of the allotetraploid Chenopodium quinoa. Biochem Bioph Res Co 496:280–286

    CAS  CrossRef  Google Scholar 

  • Jacobsen SE (2003) The worldwide potential for quinoa (Chenopodium quinoa Willd.). Food Rev Int 19:167–177

    CrossRef  Google Scholar 

  • Jarvis DE, Ho YS, Lightfoot DJ, Schmockel SM, Li B, Borm TJA, Ohyanagi H, Mineta K, Michell CT, Saber N, Kharbatia NM, Rupper RR, Sharp AR, Dally N, Boughton BA, Woo YH, Gao G, Schijlen EGWM, Guo XJ, Momin AA, Negrao S, Al-Babili S, Gehring C, Roessner U, Jung C, Murphy K, Arold ST, Gojobori T, van der Linden CG, van Loo EN, Jellen EN, Maughan PJ, Tester M (2017) The genome of Chenopodium quinoa (vol 542, pg 307, 2017). Nature 545:510–510

    CAS  PubMed  CrossRef  Google Scholar 

  • Jarvis DE, Kopp OR, Jellen EN, Mallory MA, Pattee J, Bonifacio A, Coleman CE, Stevens MR, Fairbanks DJ, Maughan PJ (2008) Simple sequence repeat marker development and genetic mapping in quinoa (Chenopodium quinoa Willd.). J Genet 87:39–51

    CAS  PubMed  CrossRef  Google Scholar 

  • Jellen EN, Kolano BA, Sederberg MC, Bonifacio A, Maughan PJ (2011) Chenopodium. In: Wild crop relatives: genomic and breeding resources. Springer, pp 35–61

    Google Scholar 

  • Jofre-Garfias A, Villegas-Sepúlveda N, Cabrera-Ponce J, Adame-Alvarez R, Herrera-Estrella L, Simpson J (1997) Agrobacterium-mediated transformation of Amaranthus hypochondriacus: light-and tissue-specific expression of a pea chlorophyll a/b-binding protein promoter. Plant Cell Rep 16:847–852

    CAS  PubMed  CrossRef  Google Scholar 

  • Joshi D, Sood S, Hosahatti R, Kant L, Pattanayak A, Kumar A, Yadav D, Stetter MG (2018) From zero to hero: the past, present and future of grain amaranth breeding. Theor Appl Genet 131:1807–1823

    CAS  PubMed  CrossRef  Google Scholar 

  • Jung JL, Bouzoubaa S, Gilmer D, Hahne G (1992) Visualization of transgene expression at the single protoplast level. Plant Cell Rep 11:346–350

    CAS  PubMed  CrossRef  Google Scholar 

  • Karcz J, Kolano B, Maluszynska J (2005) SEM studies on fruit and seed of some Chenopodium L. species (Chenopodiaceae). Acta Biol Cracov Bot 47:61–61

    Google Scholar 

  • Kolano B, Siwinska D, Pando LG, Szymanowska-Pulka J, Maluszynska J (2012a) Genome size variation in Chenopodium quinoa (Chenopodiaceae). Plant Syst Evol 298:251–255

    CAS  CrossRef  Google Scholar 

  • Kolano B, Tomczak H, Molewska R, Jellen EN, Maluszynska J (2012b) Distribution of 5S and 35S rRNA gene sites in 34 Chenopodium species (Amaranthaceae). Bot J Linn Soc 170:220–231

    CrossRef  Google Scholar 

  • Komari T (1990) Transformation of cultured-cells of Chenopodium-Quinoa by binary vectors that carry a fragment of DNA from the virulence region of Ptibo542. Plant Cell Rep 9:303–306

    CAS  PubMed  CrossRef  Google Scholar 

  • Kubo T, Nishizawa S, Sugawara A, Itchoda N, Estiati A, Mikami T (2000) The complete nucleotide sequence of the mitochondrial genome of sugar beet (Beta vulgaris L.) reveals a novel gene for tRNA(Cys)(GCA). Nucleic Acids Res 28:2571–2576

    CAS  PubMed  PubMed Central  CrossRef  Google Scholar 

  • Lee JH, Ryu HS, Chung KS, Pose D, Kim S, Schmid M, Ahn JH (2013) Regulation of temperature-responsive flowering by MADS-box transcription factor repressors. Science 342:628–632

    CAS  PubMed  CrossRef  Google Scholar 

  • Li H, Cao H, Cai YF, Wang JH, Qu SP, Huang XQ (2014) The complete chloroplast genome sequence of sugar beet (Beta vulgaris ssp vulgaris). Mitochondr DNA 25:209–211

    CAS  CrossRef  Google Scholar 

  • Liu JX, Wang RM, Liu WY, Zhang HL, Guo YD, Wen RY (2018) Genome-wide characterization of heat-shock protein 70s from Chenopodium quinoa and expression analyses of Cqhsp70s in response to drought stress. Genes-Basel 9

    Google Scholar 

  • Ma XL, Zhu QL, Chen YL, Liu YG (2016) CRISPR/Cas9 platforms for genome editing in plants: developments and applications. Mol Plant 9:961–974

    CAS  PubMed  CrossRef  Google Scholar 

  • Mason SL, Stevens MR, Jellen EN, Bonifacio A, Fairbanks DJ, Coleman CE, McCarty RR, Rasmussen AG, Maughan PJ (2005) Development and use of microsatellite markers for germplasm characterization in quinoa (Chenopodium quinoa Willd.). Crop Sci 45:1618–1630

    CAS  CrossRef  Google Scholar 

  • Maughan PJ, Bonifacio A, Coleman CE, Jellen EN, Stevens MR, Fairbanks DJ (2007) Quinoa (Chenopodium quinoa). In: Pulses, sugar and tuber crops. Springer, pp 147–158

    Google Scholar 

  • Maughan PJ, Bonifacio A, Jellen EN, Stevens MR, Coleman CE, Ricks M, Mason SL, Jarvis DE, Gardunia BW, Fairbanks DJ (2004) A genetic linkage map of quinoa (Chenopodium quinoa) based on AFLP, RAPD, and SSR markers. Theor Appl Genet 109:1188–1195

    CAS  PubMed  CrossRef  Google Scholar 

  • Maughan PJ, Chaney L, Lightfoot DJ, Cox BJ, Tester M, Jellen EN, Jarvis DE (2019) Mitochondrial and chloroplast genomes provide insights into the evolutionary origins of quinoa (Chenopodium quinoa Willd.). Sci Rep-Uk 9

    Google Scholar 

  • Maughan PJ, Kolano BA, Maluszynska J, Coles ND, Bonifacio A, Rojas J, Coleman CE, Stevens MR, Fairbanks DJ, Parkinson SE, Jellen EN (2006) Molecular and cytological characterization of ribosomal RNA genes in Chenopodium quinoa and Chenopodium berlandieri. Genome 49:825–839

    CAS  PubMed  CrossRef  Google Scholar 

  • Maughan PJ, Smith SM, Rojas-Beltran JA, Elzinga D, Raney JA, Jellen EN, Bonifacio A, Udall JA, Fairbanks DJ (2012) Single nucleotide polymorphism identification, characterization, and linkage mapping in Quinoa. Plant Genome-Us 5:114–125

    CAS  Google Scholar 

  • Maughan PJ, Turner TB, Coleman CE, Elzinga DB, Jellen EN, Morales JA, Udall JA, Fairbanks DJ, Bonifacio A (2009) Characterization of Salt Overly Sensitive 1 (SOS 1) gene homoeologs in quinoa (Chenopodium quinoa Wilid.). Genome 52:647–657

    CAS  PubMed  CrossRef  Google Scholar 

  • McElhinny E, Peralta E, Mazon N, Danial DL, Thiele G, Lindhout P (2007) Aspects of participatory plant breeding for quinoa in imarginal areas of Ecuador. Euphytica 153:373–384

    CrossRef  Google Scholar 

  • Mestanza C, Riegel R, Silva H, Vasquez SC (2015) Characterization of the acetohydroxyacid synthase multigene family in the tetraploide plant Chenopodium quinoa. Electron J Biotechnol 18:393–398

    CrossRef  Google Scholar 

  • Mestanza C, Riegel R, Vásquez SC, Veliz D, Cruz-Rosero N, Canchignia H, Silva H (2018) Discovery of mutations in Chenopodium quinoa Willd through EMS mutagenesis and mutation screening using pre-selection phenotypic data and next-generation sequencing. J Agric Sci 156:1196–1204

    CAS  CrossRef  Google Scholar 

  • Morales A, Zurita-Silva A, Herman JM, Silva H (2017) Transcriptional responses of Chilean Quinoa (Chenopodium quinoa Willd.) under water deficit conditions uncovers ABA-independent expression patterns. Front Plant Sci 8

    Google Scholar 

  • Morales AJ, Bajgain P, Garver Z, Maughan PJ, Udall JA (2011) Physiological responses of Chenopodium quinoa to salt stress. Int J Plant Physiol Biochem 3:219–232

    CAS  Google Scholar 

  • Morton MJ, Awlia M, Al-Tamimi N, Saade S, Pailles Y, Negrão S, Tester M (2019) Salt stress under the scalpel–dissecting the genetics of salt tolerance. Plant J 97:148–163

    CAS  PubMed  PubMed Central  CrossRef  Google Scholar 

  • Mujica A, Jacobsen S-E (2006) La quinua (Chenopodium quinoa Willd.) y sus parientes silvestres. Bótanica económica de los Andes Centrales 32:449–457

    Google Scholar 

  • Munusamy U, Abdullah SNA, Aziz MA, Khazaai H (2013) Female reproductive system of Amaranthus as the target for Agrobacterium-mediated transformation. Adv Biosci Biotechnol 4:188

    CrossRef  CAS  Google Scholar 

  • Nakamura S, Ikegami A, Mizuno M, Yagi F, Nomura K (2004) The expression profile of lectin differs from that of seed storage proteins in Castanea crenata trees. Biosci Biotech Biochem 68:1698–1705

    CAS  CrossRef  Google Scholar 

  • Orsini F, Accorsi M, Gianquinto G, Dinelli G, Antognoni F, Carrasco KBR, Martinez EA, Alnayef M, Marotti I, Bosi S, Biondi S (2011) Beyond the ionic and osmotic response to salinity in Chenopodium quinoa: functional elements of successful halophytism. Funct Plant Biol 38:818–831

    CAS  PubMed  CrossRef  Google Scholar 

  • Pal A, Swain SS, Das AB, Mukherjee AK, Chand PK (2013) Stable germ line transformation of a leafy vegetable crop amaranth (Amaranthus tricolor L.) mediated by Agrobacterium tumefaciens. Vitro Cell Dev Biol-Plant 49:114–128

    CAS  CrossRef  Google Scholar 

  • Palomino G, Hernandez LT, Torres ED (2008) Nuclear genome size and chromosome analysis in Chenopodium quinoa and C-berlandieri subsp nuttalliae. Euphytica 164:221–230

    CAS  CrossRef  Google Scholar 

  • Palomino G, Segura M, Bye R, Mercado P (1990) Cytogenetic distinction between Teloxys and Chenopodium (Chenopodiaceae). Southwest Nat 35:351–353

    CrossRef  Google Scholar 

  • Pando G, Deza P (2017) Development of Advanced Mutant Lines of Native Grains through Radiation-induced Mutagenesis in Peru. Horticult Int J 1:15–19

    CrossRef  Google Scholar 

  • Pin PA, Benlloch R, Bonnet D, Wremerth-Weich E, Kraft T, Gielen JJL, Nilsson O (2010) An antagonistic pair of FT homologs mediates the control of flowering time in sugar beet. Science 330:1397–1400

    CAS  PubMed  CrossRef  Google Scholar 

  • Pin PA, Nilsson O (2012) The multifaceted roles of FLOWERING LOCUS T in plant development. Plant, Cell Environ 35:1742–1755

    CAS  CrossRef  Google Scholar 

  • Pose D, Verhage L, Ott F, Yant L, Mathieu J, Angenent GC, Immink RG, Schmid M (2013) Temperature-dependent regulation of flowering by antagonistic FLM variants. Nature 503:414–417

    CAS  PubMed  CrossRef  Google Scholar 

  • Pulvento C, Riccardi M, Lavini A, Iafelice G, Marconi E, d’Andria R (2012) Yield and quality characteristics of quinoa grown in open field under different saline and non-saline irrigation regimes. J Agron Crop Sci 198:254–263

    CAS  CrossRef  Google Scholar 

  • Qadir M, Quillérou E, Nangia V, Murtaza G, Singh M, Thomas RJ, Drechsel P, Noble AD (2014) Economics of salt-induced land degradation and restoration. In: Natural resources forum. Wiley Online Library, pp 282–295

    Google Scholar 

  • Rabah SO, Lee C, Hajrah NH, Makki RM, Alharby HF, Alhebshi AM, Sabir JSM, Jansen RK, Ruhlman TA (2017) Plastome sequencing of ten nonmodel crop species uncovers a large insertion of mitochondrial DNA in cashew. Plant Genome-Us 10

    Google Scholar 

  • Rana T, Narzary D, Ohri D (2010) Genetic diversity and relationships among some wild and cultivated species of Chenopodium L. (Amaranthaceae) using RAPD and DAMD methods. Curr Sci:840–846

    Google Scholar 

  • Raney JA (2012) Transcriptome analysis of drought induced stress in Chenopodium quinoa

    Google Scholar 

  • Renny-Byfield S, Chester M, Kovarik A, Le Comber SC, Grandbastien MA, Deloger M, Nichols RA, Macas J, Novak P, Chase MW, Leitch AR (2011) Next generation sequencing reveals genome downsizing in allotetraploid Nicotiana tabacum, predominantly through the elimination of paternally derived repetitive DNAs. Mol Biol Evol 28:2843–2854

    CAS  PubMed  CrossRef  Google Scholar 

  • Reynolds DJ (2009) Genetic dissection of triterpenoid saponin production in Chenopodium quinoa using microarray analysis

    Google Scholar 

  • Ruas PM, Bonifacio A, Ruas CF, Fairbanks DJ, Andersen WR (1999) Genetic relationship among 19 accessions of six species of Chenopodium L., by random amplified polymorphic DNA fragments (RAPD). Euphytica 105:25–32

    CrossRef  Google Scholar 

  • Ruiz K, Biondi S, Martínez E, Orsini F, Antognoni F, Jacobsen S-E (2016) Quinoa–a model crop for understanding salt-tolerance mechanisms in halophytes. Plant Biosyst-Int J Deal Aspects Plant Biol 150:357–371

    Google Scholar 

  • Ruiz KB, Biondi S, Oses R, Acuña-Rodríguez IS, Antognoni F, Martinez-Mosqueira EA, Coulibaly A, Canahua-Murillo A, Pinto M, Zurita-Silva A, Bazile D, Jacobsen S-E, Molina-Montenegro MA (2014) Quinoa biodiversity and sustainability for food security under climate change. A review. Agron Sustain Dev 34:349–359

    CrossRef  Google Scholar 

  • Ruiz-Carrasco K, Antognoni F, Coulibaly AK, Lizardi S, Covarrubias A, Martinez EA, Molina-Montenegro MA, Biondi S, Zurita-Silva A (2011) Variation in salinity tolerance of four lowland genotypes of quinoa (Chenopodium quinoa Willd.) as assessed by growth, physiological traits, and sodium transporter gene expression. Plant Physiol Biochem 49:1333–1341

    CAS  PubMed  CrossRef  Google Scholar 

  • Salazar J, Torres MD, Gutierrez B, Torres AF (2019) Molecular characterization of Ecuadorian quinoa (Chenopodium quinoa Willd.) diversity: implications for conservation and breeding. Euphytica 215

    Google Scholar 

  • Schmitz-Linneweber C, Maier RM, Alcaraz JP, Cottet A, Herrmann RG, Mache R (2001) The plastid chromosome of spinach (Spinacia oleracea): complete nucleotide sequence and gene organization. Plant Mol Biol 45:307–315

    CAS  PubMed  CrossRef  Google Scholar 

  • Schmockel SM, Lightfoot DJ, Razali R, Tester M, Jarvis DE (2017) Identification of putative transmembrane proteins involved in salinity tolerance in Chenopodium quinoa by integrating physiological data, RNAseq, and SNP analyses. Front Plant Sci 8

    Google Scholar 

  • Shabala S, Hariadi Y, Jacobsen SE (2013) Genotypic difference in salinity tolerance in quinoa is determined by differential control of xylem Na + loading and stomatal density. J Plant Physiol 170:906–914

    CAS  PubMed  CrossRef  Google Scholar 

  • Simmonds NW (1971) Breeding System of Chenopodium-Quinoa. 1. Male sterility. Heredity 27:73–000

    CrossRef  Google Scholar 

  • Solís JF, Mlejnek P, Studená K, Procházka S (2003) Application of sonication-assisted Agrobacterium-mediated transformation in Chenopodium rubrum L. Plant Soil Environ 49:255–260

    CrossRef  Google Scholar 

  • Staiger D, Brown JWS (2013) Alternative splicing at the intersection of biological timing, development, and stress responses. Plant Cell 25:3640–3656

    CAS  PubMed  PubMed Central  CrossRef  Google Scholar 

  • Stevens MR, Coleman CE, Parkinson SE, Maughan PJ, Zhang HB, Balzotti MR, Kooyman DL, Arumuganathan K, Bonifacio A, Fairbanks DJ, Jellen EN, Stevens JJ (2006) Construction of a quinoa (Chenopodium quinoa Willd.) BAC library and its use in identifying genes encoding seed storage proteins. Theor Appl Genet 112:1593–1600

    CAS  PubMed  CrossRef  Google Scholar 

  • Štorchová H, Drabesova J, Chab D, Kolar J, Jellen EN (2015) The introns in FLOWERING LOCUS T-LIKE (FTL) genes are useful markers for tracking paternity in tetraploid Chenopodium quinoa Willd. Genet Resour Crop Evol 62:913–925

    CrossRef  CAS  Google Scholar 

  • Swain SS, Sahu L, Barik DP, Chand PK (2010) Agrobacterium × plant factors influencing transformation of ‘Joseph’s coat’(Amaranthus tricolor L.). Sci Hortic-Amsterdam 125:461–468

    CAS  CrossRef  Google Scholar 

  • Tartara SMC, Manifesto MM, Bramardi SJ, Bertero HD (2012) Genetic structure in cultivated quinoa (Chenopodium quinoa Willd.), a reflection of landscape structure in Northwest Argentina. Conserv Genet 13:1027–1038

    CrossRef  Google Scholar 

  • Trick HN, Finer JJ (1997) SAAT: sonication-assisted Agrobacterium-mediated transformation. Transgenic Res 6:329–336

    CAS  CrossRef  Google Scholar 

  • Vega-Galvez A, Miranda M, Vergara J, Uribe E, Puente L, Martinez EA (2010) Nutrition facts and functional potential of quinoa (Chenopodium quinoa willd.), an ancient Andean grain: a review. J Sci Food Agr 90:2541–2547

    CAS  CrossRef  Google Scholar 

  • Vidueiros SM, Curti RN, Dyner LM, Binaghi MJ, Peterson G, Bertero HD, Pallaro AN (2015) Diversity and interrelationships in nutritional traits in cultivated quinoa (Chenopodium quinoa Willd.) from Northwest Argentina. J Cereal Sci 62:87–93

    CrossRef  Google Scholar 

  • Wang KY, Li L, Li SK, Sun HH, Zhao MZ, Zhang MP, Wang Y (2017) Characterization of the complete chloroplast genome of Chenopodium quinoa Willd. Mitochondr DNA B 2:812–813

    CrossRef  Google Scholar 

  • Ward SM (2000) Allotetraploid segregation for single-gene morphological characters in quinoa (Chenopodium quinoa Willd.). Euphytica 116:11–16

    CAS  CrossRef  Google Scholar 

  • Wilson H, Manhart J (1993) Crop-weed gene flow - Chenopodium-Quinoa Willd and C-Berlandieri Moq. Theor Appl Genet 86:642–648

    CAS  PubMed  CrossRef  Google Scholar 

  • Wilson HD (1981) Genetic-variation among south-american populations of tetraploid Chenopodium-Sect Chenopodium-Subsect Cellulata. Syst Bot 6:380–398

    CrossRef  Google Scholar 

  • Wilson HD (1988a) Allozyme variation and morphological relationships of Chenopodium hircinum (sl). Syst Bot:215–228

    Google Scholar 

  • Wilson HD (1988b) Quinua biosystematics I: domesticated populations. Econ Bot 42:461–477

    CrossRef  Google Scholar 

  • Wilson HD (1988c) Quinua biosystematics II: free-living populations. Econ Bot 42:478–494

    CrossRef  Google Scholar 

  • Wilson HD (1990) Quinua and relatives (Chenopodium Sect Chenopodium Subsect Cellulata). Econ Bot 44:92–110

    CrossRef  Google Scholar 

  • Xu C, Jiao C, Sun HH, Cai XF, Wang XL, Ge CH, Zheng Y, Liu WL, Sun XP, Xu YM, Deng J, Zhang ZH, Huang SW, Dai SJ, Mou BQ, Wang QX, Fei ZJ, Wang QH (2017) Draft genome of spinach and transcriptome diversity of 120 Spinacia accessions. Nat Commun 8

    Google Scholar 

  • Yasui Y, Hirakawa H, Oikawa T, Toyoshima M, Matsuzaki C, Ueno M, Mizuno N, Nagatoshi Y, Imamura T, Miyago M, Tanaka K, Mise K, Tanaka T, Mizukoshi H, Mori M, Fujita Y (2016) Draft genome sequence of an inbred line of Chenopodium quinoa, an allotetraploid crop with great environmental adaptability and outstanding nutritional properties. DNA Res 23:535–546

    CAS  PubMed  PubMed Central  CrossRef  Google Scholar 

  • Zhang TF, Gu MF, Liu YH, Lv YD, Zhou L, Lu HY, Liang SQ, Bao HB, Zhao H (2017) Development of novel InDel markers and genetic diversity in Chenopodium quinoa through whole-genome re-sequencing. BMC Genom 18

    Google Scholar 

  • Zou CS, Chen AJ, Xiao LH, Muller HM, Ache P, Haberer G, Zhang ML, Jia W, Deng P, Huang R, Lang D, Li F, Zhan DL, Wu XY, Zhang H, Bohm J, Liu RY, Shabala S, Hedrich R, Zhu JK, Zhang H (2017) A high-quality genome assembly of quinoa provides insights into the molecular basis of salt bladder-based salinity tolerance and the exceptional nutritional value. Cell Res 27:1327–1340

    CAS  PubMed  PubMed Central  CrossRef  Google Scholar 

  • Zurita-Silva A, Fuentes F, Zamora P, Jacobsen SE, Schwember AR (2014) Breeding quinoa (Chenopodium quinoa Willd.): potential and perspectives. Mol Breed 34:13–30

    CrossRef  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Elodie Rey .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and Permissions

Copyright information

© 2021 Springer Nature Switzerland AG

About this chapter

Verify currency and authenticity via CrossMark

Cite this chapter

Rey, E., Jarvis, D.E. (2021). Structural and Functional Genomics of Chenopodium quinoa. In: Schmöckel, S.M. (eds) The Quinoa Genome. Compendium of Plant Genomes. Springer, Cham. https://doi.org/10.1007/978-3-030-65237-1_6

Download citation