Skip to main content

Botanical Context for Domestication in South America

Part of the Compendium of Plant Genomes book series (CPG)

Abstract

Quinoa domestication studies based on seed’s morphological traits and conducted in the Central Andes region concluded that it occurred somewhere around Lake Titicaca before 3000 BC. Recent genetic studies showed quinoa (an allotetraploid) resulting from the fusion of two diploid species (carrying the A and B genomes), one Eurasian and one American (probably in North America), from where a tetraploid ancestor migrated to South America. Extant wild relatives are found from the U.S. to South America, and quinoa is part of a complex of domesticates including Chenopodium berlandieri spp. jonesianum and nuttalliae. Quinoa domestication in the Andes appears as a diffuse process occurring in a wide area within the Bolivian Highlands. Here, we pose the hypothesis and provide evidence that quinoa was domesticated twice: in the Andes and Central Chile. The domestication syndrome in quinoa included bigger seeds with a reduced testa width and a range of colours, plus a wide array of plant architectures, panicle morphologies and reproductive partitioning. We widen those studies including root traits and phenological adaptations to a wide climatic range. Finally, the hypothesis that reduced testa width can be related more to reduced restrictions to seed growth than to a reduced dormancy is presented.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
EUR   29.95
Price includes VAT (Finland)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
EUR   117.69
Price includes VAT (Finland)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
EUR   164.99
Price includes VAT (Finland)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
EUR   164.99
Price includes VAT (Finland)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  • Aellen P (1929) Beitrag zur Systematik der Chenopodium-Arten Amerikas, vorwiegend auf Grund der Sammlung des United States National Museum in Washington, D.C. II. Repert Nov Specierum Regni Veg 26:119–160

    Google Scholar 

  • Aellen P, Just T (1943) Key and synopsis of the American species of the genus Chenopodium L. Am Midl Nat 30:47–76

    Article  Google Scholar 

  • Adolf VI, Shabala S, Andersen MN, Razzaghi F, Jacobsen S-E (2012) Varietal differences of quinoa’s tolerance to saline conditions. Plant Soil 357:117–129

    Article  CAS  Google Scholar 

  • Alandia G, Jacobsen S-E, Kyvsgaard NC, Condori B, Liu F (2016) Nitrogen sustains seed yield of quinoa under intermediate drought. J Agron Crop Sci 202:281–291

    Article  CAS  Google Scholar 

  • Alvarez-Flores R, Winkel T, Degueldre D, Del Castillo C, Joffre R (2014a) Plant growth dynamics and root morphology of little-known species of Chenopodium from contrasted Andean habitats. Botany 92:101–108

    Article  Google Scholar 

  • Alvarez-Flores R, Winkel T, Nguyen-Thi-Truc A, Joffre R (2014b) Root foraging capacity depends on root system architecture and ontogeny in seedlings of three Andean Chenopodium species. Plant Soil 380:415–428

    Article  CAS  Google Scholar 

  • Alvarez-Flores R, Nguyen-Thi-Truc A, Peredo-Parada S, Joffre R, Winkel T (2018) Rooting plasticity in wild and cultivated Andean Chenopodium species under soil water deficit. Plant Soil 425:479–492. https://doi.org/10.1007/s11104-018-3588-7

  • Anabalon Rodriguez L, Thomet Isla M (2009) Comparative analysis of genetic and morphologic diversity among quinoa accessions (Chenopodium quinoa Willd.) of the south of Chile and Highland accessions. J Plant Breed Crop Sci 1:210–216

    Google Scholar 

  • Babot MP (2011) South-Central Andes hunter-gatherers and plant processing. A discussion from Southern Argentinian Puna (CA. 7000–3200 years BP). Chungara 43:413–432

    Google Scholar 

  • Babot MP, Aguirre MG, Arizio CM, Aschero CA, Bertero HD, Costa-Tártara S, Hocsman S, Joffre R, López Campeny SML, Manifesto MM, Winkel T (2015) Diversidad genética de quinoa en los últimos dos milenios: primer caso de estudio en Antofagasta de la Sierra (puna de Catamarca, Argentina). In: Abstracts of the V world quinoa congress, San Salvador de Jujuy, 27–30 May 2015

    Google Scholar 

  • Barrón-Yánez MR, Villanueva-Verduzco C, García-Mateos MR, Colinas-León MT (2009) Valor nutricio y contenido de saponinas en germinados de huauzontle (Chenopodium nuttalliae Saff.), calabacita (Cucurbita pepo L.), canola (Brassica napus L.) y amaranto (Amaranthus leucocarpus S. Watson syn. hypoch. Rev Chapingo Ser Hortic 15:237–243

    Google Scholar 

  • Bazile D, Baudron F (2015) The dynamics of the global expansion of quinoa growing in view of its high biodiversity. In: Bazile D, Bertero, D, Nieto C (eds) State of the art report on Quinoa around the World 2013. FAO (Santiago de Chile) and CIRAD (Montpellier, Francia), pp 42–55

    Google Scholar 

  • Bazile D, Fuentes F, Mujica A (2013) Historical perspectives and domestication. In: Barghava A, Srivastava S (eds) Quinoa: botany, production and uses. CABI, Boston, pp 16–36

    Chapter  Google Scholar 

  • Bazile D, Bertero D, Nieto C (eds) (2015) State of the art report on quinoa around the world in 2013. FAO (Santiago de Chile) and CIRAD (Montpellier, Francia)

    Google Scholar 

  • Bertero D, Medan D, Hall AJ (1996) Changes in apical morphology during floral initiation and reproductive development in quinoa (Chenopodium quinoa Willd.). Ann Bot 78:317–324

    Article  Google Scholar 

  • Bertero HD, King RW, Hall AJ (1999a) Modelling photoperiod and temperature responses of flowering in quinoa (Chenopodium quinoa Willd.). Field Crops Res 63:19–34

    Article  Google Scholar 

  • Bertero HD, King RW, Hall AJ (1999b) Photoperiod-sensitive development phases in quinoa (Chenopodium quinoa Willd.). Field Crops Res 60:231–243

    Article  Google Scholar 

  • Bertero HD (2003) Response of developmental processes to temperature and photoperiod in quinoa (Chenopodium quinoa Willd.). Food Rev Int 19:87–97

    Article  Google Scholar 

  • Bertero HD, de la Vega AJ, Correa G, Jacobsen SE, Mujica A (2004) Genotype and genotype-by-environment interaction effects for grain yield and grain size of quinoa (Chenopodium quinoa Willd.) as revealed by pattern analysis of international multi-environment trials. Field Crops Res 89:299–318

    Article  Google Scholar 

  • Biondi S, Ruiz KB, Martínez EA, Zurita-Silva A, Orsini F, Antognini F, Dinelli G, Marotti I, Gianquinto G, Maldonado S, Burrieza H, Bazile D, Adolf VI,Jacobsen SE (2015) Tolerance to saline conditions In: Bazile D, Bertero D, Nieto C (eds) State of the Art Report on Quinoa Around the World 2013. FAO (Santiago de Chile) and CIRAD (Montpellier, Francia), pp 143–155

    Google Scholar 

  • Bioversity International (2013) Descriptors for quinoa (Chenopodium quinoa Willd.) and wild relatives. Bioversity International, Food and Agriculture Organization of the United Nations, Rome, Italy

    Google Scholar 

  • Bruno MC (2005a) Domesticated or wild? Results of the investigation of Chenopodium seeds form Chiripa, Bolivia (1500 BC-100 BC). Textos Antropológicos 2:39–50

    Google Scholar 

  • Bruno MC (2005b) A morphological approach to documenting Chenopodium domestication in the Andes. In: Zeder M, Bradley D, Emhswiller E, Smith D (eds) Documenting domestication: new genetic and archaeological paradigms. University of California Press, Berkeley

    Google Scholar 

  • Bruno MC (2008) Waranq Waranqa: ethnobotanical perspectives on agricultural intensification in the Lake Titicaca basin (Taraco peninsula, Bolivia). Ph D thesis Dissertation, Washington University of Saint Louis

    Google Scholar 

  • Bruno MC, Whitehead WT (2003) Chenopodium cultivation and formative period agriculture at Chiripa, Bolivia. Lat Am Antiq 14:339–355

    Article  Google Scholar 

  • Burrieza HP, Sanguinetti A, Michieli CT, Bertero HD, Maldonado S (2016) Death of embryos from 2300-year-old quinoa seeds found in an archaeological site: Plant Sci 253:107–117

    Google Scholar 

  • Ceccato D (2011) Efecto de las condiciones ambientales durante el llenado de granos sobre la dormición en semillas de quinoa (Chenopodium quinoa Willd.), y su relación con la susceptibilidad al brotado pre-cosecha. MsSci thesis Dissertation, University of Buenos Aires, Argentina

    Google Scholar 

  • Ceccato D, Bertero D, Batlla D, Galati B (2015) Structural aspects of dormancy in quinoa (Chenopodium quinoa): importance and possible action mechanisms of the seed coat. Seed Sci Res 25:267–275

    Article  CAS  Google Scholar 

  • Cocozza C, Pulvento C, Lavini A, Riccardi M, d’Andria R, Tognetti R (2013) Effects of increasing salinity stress and decreasing water availability on ecophysiological traits of quinoa (Chenopodium quinoa Willd.) grown in a mediterranean-type agroecosystem. J Agron Crop Sci 199:229–240

    Article  Google Scholar 

  • Christensen SA, Pratt DB, Pratt C, Nelson PT, Stevens MR, Jellen EN, Coleman CE, Fairbanks DJ, Bonifacio A, Maughan PJ (2007) Assessment of genetic diversity in the USDA and CIP-FAO international nursery collections of quinoa (Chenopodium quinoa Willd.) using microsatellite markers. Plant Genet Resour 5:82–95

    Article  CAS  Google Scholar 

  • Christiansen JL, Jacobsen S-E, Jørgensen ST (2010) Photoperiodic effect on flowering and seed development in quinoa (Chenopodium quinoa Willd.). Acta Agric Scand Sect B — Soil Plant Sci 60:539–544

    Google Scholar 

  • Costa Tártara SM (2014) Caracterizacion molecular del germoplasma nativo de quinoa (Chenopodium quinoa Willd.) del Noroeste Argentino mediante microsatelites. PhD thesis Dissertation, University of La Plata, Argentina

    Google Scholar 

  • Costa Tártara SM, Manifesto MM, Bramardi SJ, Bertero HD (2012) Genetic structure in cultivated quinoa (Chenopodium quinoa Willd.), a reflection of landscape structure in Northwest Argentina. Conserv Genet 13:1027–1038

    Article  Google Scholar 

  • Costa Tártara SM, Manifesto MM, Curti RN, Bertero HD (2015) Origen, prácticas de cultivo, usos y diversidad genética de quinua del Noroeste Argentino (NOA) en el contexto del conocimiento actual del germoplasma de America del Sur. In: Cruz P, Joffre R, Winkel T (eds) Racionalidades campesinas en los Andes del Sur: reflexiones en torno al cultivo de la quinua y otros cultivos andinos. Editorial de la Universidad Nacional de Jujuy, Jujuy, pp 201–230

    Google Scholar 

  • Curti RN, Andrade AJ, Bramardi S, Velásquez B, Daniel Bertero H (2012) Ecogeographic structure of phenotypic diversity in cultivated populations of quinoa from Northwest Argentina. Ann Appl Biol 160:114–125

    Article  Google Scholar 

  • Curti RN, de la Vega AJ, Andrade AJ, Bramardi SJ, Bertero HD (2014) Multi-environmental evaluation for grain yield and its physiological determinants of quinoa genotypes across Northwest Argentina. Field Crops Res 166:46–57

    Article  Google Scholar 

  • Curti RN, de la Vega AJ, Andrade AJ, Bramardi SJ, Bertero HD (2016) Adaptive responses of quinoa to diverse agro-ecological environments along an altitudinal gradient in North West Argentina. Field Crops Res 189:10–18

    Article  Google Scholar 

  • del Castillo C, Winkel T, Mahy G, Bizoux J-P (2007) Genetic structure of quinoa (Chenopodium quinoa Willd.) from the Bolivian altiplano as revealed by RAPD markers. Genet Resour Crop Evol 54:897–905

    Article  CAS  Google Scholar 

  • Dillehay TD, Rossen J, Andres TC, Williams DE (2007) Preceramic adoption of peanut, squash and cotton in Northern Peru. Science 316:1890–1893

    Article  CAS  PubMed  Google Scholar 

  • Escribano J, Cabanes J, Jiménez-Atiénzar M, Ibañez-Tremolada M, Gómez-Pando LR, García-Carmona F, Gandía-Herrero F (2017) Characterization of betalains, saponins and antioxidant power in differently colored quinoa (Chenopodium quinoa) varieties. Food Chem 234:285–294

    Article  CAS  PubMed  Google Scholar 

  • Fuentes FF, Martinez EA, Hinrichsen PV, Jellen EN, Maughan PJ (2009) Assessment of genetic diversity patterns in chilean quinoa (Chenopodium quinoa Willd.) germplasm using multiplex fluorescent microsatellite markers. Conserv Genet 10:369–377

    Article  CAS  Google Scholar 

  • Gandarillas H (1968) Razas de quinua. Boletin Experimental No 34. Ministerio de Agricultura. Instituto Boliviano de Cultivos Andinos

    Google Scholar 

  • Gandarillas H (1979) Genética y origen. In: Tapia ME, Gandarillas H, Alandia S, Cardozo A, Mujica A (eds) Quinua y kaniwa: Cultivos Andinos. Instituto Interamericano de Ciencias Agrícolas, Bogotá, pp 45–64

    Google Scholar 

  • Gandarillas H, Tapia M (1976) La variedad de quinua dulce Sajama. In Convencion Internacional de Quenopodiaceas 2. Potosi, Bolivia. IICA, Informes de Conferencias, Cursos y Reuniones No. 96

    Google Scholar 

  • Geerts S, Raes D, Garcia M, del Castillo C, Buytaert W (2006) Agro-climatic suitability mapping for crop production in the Bolivian highlands: a case study for quinoa. Agric Forest Meteorol 139:399–412

    Article  Google Scholar 

  • Geerts S, Raes D, Garcia M (2008) Indicators to quantify the flexible phenology of quinoa (Chenopodium quinoa Willd.) in response to drought stress. Field Crops Res 108:150–156

    Article  Google Scholar 

  • Gepts P (2010) Crop domestication as a long-term selection experiment. Plant Breed Rev 24:1–44

    Google Scholar 

  • González JA, Bruno M, Valoy M, Prado FE (2010) Genotypic variation of gas exchange parameters and leaf stable carbon and nitrogen isotopes in ten quinoa cultivars grown under drought. J Agron Crop Sci 197:81–93

    Article  Google Scholar 

  • González Marín SP (2009) Estudio del flujo de genes en quinua (Chenopodium quinoa Willd.) en campos de agricultores mediante el uso de marcadores microsatelitales. Undergraduate thesis dissertation Escuela Politecnica del Ejercito, Sangolqui, Ecuador

    Google Scholar 

  • Gremillion KJ (1993) Crop and weed in Prehistoric Eastern North America: the Chenopodium example. Amer Ant 58:496–509

    Article  Google Scholar 

  • Hariadi Y, Marandon K, Tian Y, Jacobsen S-E, Shabala S (2011) Ionic and osmotic relations in quinoa (Chenopodium quinoa Willd.) plants grown at various salinity levels. J Exp Bot 62:185–193

    Article  CAS  PubMed  Google Scholar 

  • Heiser CB, Nelson DC (1974) On the origin of the cultivated Chenopods (Chenopodium). Genetics 78:503–505

    Article  PubMed Central  Google Scholar 

  • Hilgert NI (1999) Las plantas comestibles en un sector de las Yungas meridionales (Argentina). An Jardín Botánico Madrid 57:117–138

    Google Scholar 

  • Hunziker AT (1943a) Las especies alimenticias de Amaranthus y Chenopodium cultivadas por los indios de América. Rev Arg Agron 10:297–354

    Google Scholar 

  • Hunziker AT (1943b) Granos hallados en el yacimiento arqueológico de Pampa Grande (Salta, Argentina). Rev Arg Agron 10:146–154

    Google Scholar 

  • Jacobsen S-E (2003) The worldwide potential for quinoa (Chenopodium quinoa Willd.). Food Rev Int 19:167–177

    Article  Google Scholar 

  • Jacobsen S-E, Liu F, Jensen CR (2009) Does root-sourced ABA play a role for regulation of stomata under drought in quinoa (Chenopodium quinoa Willd.). Sci Hortic 122:281–287

    Article  CAS  Google Scholar 

  • Jankurova M, Minariviciva L, Dandar A (2009) Quinoa-a review. Czech. J Food Sci 27:71–79

    Google Scholar 

  • Jarvis DE, Ho YS, Lightfoot DJ, Schmöckel SM, Li B, Borm TJA, Ohyanagi H, Mineta K, Michell CT, Saber N, Kharbatia NM, Rupper RR, Sharp AR, Dally N, Boughton BA, Woo YH, Gao G, Schijlen EGWM, Guo X, Momin AA, Negrão S, Al-Babili S, Gehring C, Roessner U, Jung C, Murphy K, Arold ST, Gojobori T, van der Linden CG, van Loo EN, Jellen EN, Maughan PJ, Tester M (2017) The genome of Chenopodium quinoa. Nature 542:307–312

    Article  CAS  PubMed  Google Scholar 

  • Jellen EN, Maughan PJ, Fuentes F, Kolano BA (2015) Botany, phylogeny and evolution. In: Bazile, Bertero D, Nieto D (eds) State of the Art Report on Quinoa Around the World 2013. FAO (Santiago de Chile) and CIRAD (Montpellier, Francia), pp 12–23

    Google Scholar 

  • Jensen CR, Jacobsen S-E, Andersen MN, Núñez N, Andersen SD, Rasmussen L, Mogensen VO (2000) Leaf gas exchange and water relation characteristics of field quinoa (Chenopodium quinoa Willd.) during soil drying. Eur J Agron 13:11–25

    Article  Google Scholar 

  • Joffre R, Acho J (2008) Quinoa, descanso y tholares en el sur del altiplano Boliviano. Habitat 75:38–48

    Google Scholar 

  • Kistler L, Shapiro B (2011) Ancient DNA confirms a local origin of domesticated Chenopod in eastern North America. J Archaeol Sci 38:3549–3554

    Article  Google Scholar 

  • Kolano B, McCann J, Orzechowska M, Siwinska D, Temsch E, Weiss-Schneeweiss H (2016) Molecular and cytogenetic evidence for an allotetraploid origin of Chenopodium quinoa and C. berlandieri (Amaranthaceae). Mol Phylogenet Evol 100:109–123

    Article  CAS  PubMed  Google Scholar 

  • Koziol MJ (1991) Afrosymetric estimation of threshold saponin concentration for bitterness in quinoa (Chenopodium quinoa Willd.). J Sci Food Agric 54:211–219

    Article  CAS  Google Scholar 

  • Lagiglia H (2001) Los origenes de la agricultura en Argentina. In: Berberian EE, Nielsen AE (eds) Historia Argentina Prehispanica, vol 1. ed. Brujas, Cordoba, Argentina, pp 41–81

    Google Scholar 

  • Langlie B (2008) Paleoethnobotanical analysis of Formative Chiripa, Bolivia. Ph D Thesis dissertation, University of California

    Google Scholar 

  • Langlie B (2019) Morphological analysis of late Pre-hispanic Peruvian Chenopodium spp. Veg Hist Archaeobot. https://doi.org/10.1007/s0033401806778

  • Langlie BS, Hastorf CA, Bruno MC, Bermann M, Bonzani RM, Condarco WC (2011) Diversity in andean Chenopodium domestication: describing a new morphological type from La Barca, Bolivia 1300-1250 B.C. J Ethnobiol 31:72–88

    Article  Google Scholar 

  • Li G, Zhu F (2018) Quinoa starch: structure, properties, and applications. Carbohydr Polym 181:851–861

    Article  CAS  PubMed  Google Scholar 

  • López LM, Capparelli A, Nielsen AE (2011) Traditional post-harvest processing to make quinoa grains (Chenopodium quinoa var. quinoa) apt for consumption in Northern Lipez (Potosí, Bolivia): ethnoarchaeological and archaeobotanical analyses. Archaeol Anthropol Sci 3:49–70

    Article  Google Scholar 

  • Martínez EA, Fuentes FF, Bazile D (2015) History of quinoa: its origin, domestication, diversification, and cultivation with particular reference to the Chilean context. In: Murphy K, Matanguihan J (eds) Quinoa: improvement and sustainable production. Wiley, Hoboken, NJ, USA, pp 19–24

    Chapter  Google Scholar 

  • Mason SL, Stevens MR, Jellen EN, Bonifacio A, Fairbanks DJ, Coleman CE, McCarty RR, Rasmussen AG, Maughan PJ (2005) Development and use of microsatellite markers for germplasm characterization in quinoa (Chenopodium quinoa Willd.). Crop Sci 45:1618–1630

    Article  CAS  Google Scholar 

  • Maughan PJ, Kolano BA, Maluszynska J, Coles ND, Bonifacio A, Rojas J, Coleman CE, Stevens MR, Fairbanks DJ, Parkinson SE, Jellen EN (2006) Molecular and cytological characterization of ribosomal RNA genes in Chenopodium quinoa and Chenopodium berlandieri. Genome 49:825–839

    Article  CAS  PubMed  Google Scholar 

  • Mizui F, Kasai R, Ohtani K, Tanaka O (1988) Saponins from brans of quinoa, Chenopodium quinoa Willd. I. Chem Pharm Bull (Tokyo) 36:1415–1418

    Article  CAS  Google Scholar 

  • Mizui F, Kasai R, Ohtani K, Tanaka O (1990) Saponins from brans of quinoa, Chenopodium quinoa Willd: II. Chem Pharm Bull (Tokyo) 38:375–377

    Article  CAS  Google Scholar 

  • Mosyakin SL, Clemants SE (1996) New infrageneric taxa and combinations of Chenopodium L. (Chenopodiaceae). Novon 6:398–403

    Article  Google Scholar 

  • Nuñez L (1986) Evidencias arcaicas de maices y cuyes en Tiliviche: hacia un semisedentarismo en el litoral fertil y quebradas del norte de Chile. Chungará 16–17:25–47

    Google Scholar 

  • Oliveto LG, Ventura B (2009) Dinámicas poblacionales de los valles rientales del sur de Bolivia y norte de Argentina, siglos XV-XVII: aportes etnohistóriocos y arqueológicos. Poblac Soc 16:119–150

    Google Scholar 

  • Orsini F, Accorsi M, Gianquinto G, Dinelli G, Antognoni F, Carrasco KBR, Martinez EA, Alnayef M, Marotti I, Bosi S, Biondi S (2011) Beyond the ionic and osmotic response to salinity in Chenopodium quinoa: functional elements of successful halophytism. Funct Plant Biol 38:818–831

    Article  CAS  PubMed  Google Scholar 

  • Pearsall DM (2008) Plant domestication and the shift to agriculture in the Andes. In: Silverman and Isbell (eds) The handbook of South American archaeology. Springer, New York, pp 105–120

    Google Scholar 

  • Planella MT, Tagle B (2004) Inicios de presencia de cultígenos en la zona central de Chile, periodo Arcaico y Alfarero Temprano. Chungará 36:387–399

    Google Scholar 

  • Planella MT, Scherson R, McRostie V (2011) New evidence on the use of initial cultigens by the hunter gatherer groups of the Archaic IV period at El Plomo, Alto Maipo, Central Chile. Chungará 43:189–202

    Article  Google Scholar 

  • Planella MT, Cornejo LE, Tagle B (2005) Las Morrenas 1 Rockshelter: evidence for cultigens among hunter gatherers of the late Archaic period in Central Chile. Chungará 37:59–74

    Google Scholar 

  • Planella MT, López ML, Bruno MC (2015) Domestication and prehistoric distribution In: Bazile D, Bertero D, Nieto C (eds) State of the Art report on Quinoa around the World 2013. FAO (Santiago de Chile) and CIRAD (Montpellier, Francia), pp 29–41

    Google Scholar 

  • Prego I, Maldonado S, Otegui M (1998) Seed structure and localization of reserves in Chenopodium quinoa. Ann Bot 82:481–488

    Article  Google Scholar 

  • PROINPA (2003) Variedad quinua jacha grano. Proinpa, Cochabamba, Bolivia

    Google Scholar 

  • Razzaghi F, Ahmadi SH, Adolf VI, Jensen CR, Jacobsen SE, Andersen MN (2011) Water relations and transpiration of quinoa (Chenopodium quinoa Willd.) under salinity and soil drying. J Agron Crop Sci 197:348–360

    Article  Google Scholar 

  • Razzaghi F, Plauborg F, Jacobsen S-E, Jensen CR, Andersen MN (2012) Effect of nitrogen and water availability of three soil types on yield, radiation use efficiency and evapotranspiration in field-grown quinoa. Agric Water Manag 109:20–29

    Article  Google Scholar 

  • Richards R, Watt M, Rebetzke G (2007) Physiological traits and cereal germplasm for sustainable agricultural systems. Euphytica 154:409–425

    Article  Google Scholar 

  • Rojas W (2003) Multivariate analysis of genetic diversity of Bolivian quinoa germplasm. Food Rev Int 19:9–23

    Article  Google Scholar 

  • Rojas W, Pinto M (2015) Ex situ conservation of quinoa: the Bolivian experience. In: Murphy K, Matanguihan J (eds) Quinoa: improvement and sustainable production. Wiley, Hoboken, NJ, pp 125–158

    Chapter  Google Scholar 

  • Rojas W, Pinto M, Alacona C, Gómez Pando L, Lobos PL, Alercia A, Diulgheroff S, Padulosi S, Bazile D (2015) Quinoa genetic resources and ex situ conservation. In: Bazile D, Bertero D, Nieto C (eds) State of the Art report on Quinoa around the World 2013. FAO (Santiago de Chile) and CIRAD (Montpellier, Francia), pp 56–82

    Google Scholar 

  • Ruiz KB, Aloisi I, Del Duca S, Canelo V, Torrigiani P, Silva H, Biondi S (2016) Salares versus coastal ecotypes of quinoa: Salinity responses in Chilean landraces from contrasting habitats. Plant Physiol Biochem 101:1–13

    Article  CAS  PubMed  Google Scholar 

  • Ruiz-Carrasco K, Antognoni F, Coulibaly AK, Lizardi S, Covarrubias A, Martínez EA, Molina-Montenegro MA, Biondi S, Zurita-Silva A (2011) Variation in salinity tolerance of four lowland genotypes of quinoa (Chenopodium quinoa Willd.) as assessed by growth, physiological traits, and sodium transporter gene expression. Plant Physiol Biochem 49:1333–1341

    Article  CAS  PubMed  Google Scholar 

  • Sivori EM (1945) Fotoperiodismo de Chenopodium quinoa Willd. Reacción de la cigota y gametófito femenino. Darwiniana 7:541–551

    Google Scholar 

  • Smith BD (2006) Eastern North America as an independent center of plant domestication. Proc Natl Acad Sci 103:12223–12228

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Standley PC (1917) The Chenopodiaceae of the North American flora. Bull Torrey Bot Club 44:411–429

    Article  Google Scholar 

  • Tapia ME, Mujica A, Canahua A (1980) Origen, distribución geográfica y sistemas de producción de quinua. In: Primera reunión sobre genética y fitomejoramiento de la Quinua. Universidad Nacional Técnica del Altiplano, Instituto Boliviano de Tecnología Agropecuaria, Instituto Interamericano de Ciencias Agrícolas, Centro de Investigación Internacional para el Desarrollo, Puno, Peru. pp A1–A8

    Google Scholar 

  • Valencia-Chamorro SA (2004) QUINOA. In: Wrigley C (ed) Encyclopedia of grain science. Elsevier, Oxford, pp 1–8

    Google Scholar 

  • Vavilov NI (1992) Origin and geography of cultivated plants. Cambridge University Press, Cambridge, UK

    Google Scholar 

  • Walsh BM, Adhikary D, Maughan PJ, Emshwiller E, Jellen EN (2015) Chenopodium polyploidy inferences from Salt Overly Sensitive 1 (SOS1) data. Am J Bot 102:533–543

    Article  PubMed  Google Scholar 

  • Ward SM (2000) Response to selection for reduced grain saponin content in quinoa (Chenopodium quinoa Willd.). Field Crops Res 68:157–163

    Article  Google Scholar 

  • Whitehead WT (2007) Exploring the wild and domestic: palethnobotany at Chiripa, a Formative site in Bolivia. Dissertation, University of California

    Google Scholar 

  • Wilson HD (1981) Genetic variation among South American populations of tetraploid Chenopodium sect. Chenopodium subsect. Cellulata. Syst Bot 6:380–398

    Google Scholar 

  • Wilson HD (1988a) Quinua biosystematics I: domesticated populations. Econ Bot 42:461–477

    Article  Google Scholar 

  • Wilson HD (1988b) Quinua biosystematics II: free-living populations. Econ Bot 42:478–494

    Article  Google Scholar 

  • Wilson HD (1988c) Allozyme variation and morphological relationships of Chenopodium hircinum (s.l.). Syst Bot 13:215–228

    Article  Google Scholar 

  • Wilson HD (1990) Quinua and relatives (Chenopodium sect. Chenopodium subsect. Celluloid). Econ Bot 44:92–110

    Google Scholar 

  • Wilson HD, Heiser CB (1979) The origin and evolutionary relationships of “Huazontle” (Chenopodium nuttalliae Safford), domesticated Chenopod of Mexico. Am J Bot 66:198–206

    Google Scholar 

  • Wilson H, Manhart J (1993) Crop/weed gene flow: Chenopodium quinoa Willd. and C. berlandieri Moq. Theor Appl Genet 86:642–648

    Article  CAS  PubMed  Google Scholar 

  • Winkel T (2013) Quinoa y quinoeros. IRD editions, Marseille

    Book  Google Scholar 

  • Wu G (2015) Nutritional properties of quinoa. In: Murphy K, Matanguihan J (eds) Quinoa: improvement and sustainable production. Wiley, Hoboken, NJ, pp 193–205

    Chapter  Google Scholar 

  • Zurita-Silva A, Jacobsen SE, Razzaghi F, Alvarez-Flores R, Ruiz KB, Morales A, Silva H (2015) Quinoa drought responses and adaptation In: Bazile D, Bertero D, Nieto C (eds) State of the Art Report on Quinoa Around the World 2013. FAO (Santiago de Chile) and CIRAD (Montpellier, Francia), pp 157–171

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hector Daniel Bertero .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Curti, R.N., Bertero, H.D. (2021). Botanical Context for Domestication in South America. In: Schmöckel, S.M. (eds) The Quinoa Genome. Compendium of Plant Genomes. Springer, Cham. https://doi.org/10.1007/978-3-030-65237-1_2

Download citation

Publish with us

Policies and ethics