Skip to main content

Digital Oral Radiography

  • Chapter
  • First Online:
Digitization in Dentistry

Abstract

In this chapter, the objective is to provide information regarding the use of oral digital radiographs. A brief history is explained, followed by information on the use of intraoral and extraoral systems for direct and semi-direct use. The description details the effects, radiation, dose, costs, pre-processing and post-processing of digital images (brightness and contrast, zoom, measurements, sharpness and smoothing, high relief, pseudocolor, inverted radiography), advantages and disadvantages. Digital systems can have several image manipulations tools, and these can be accessed in the radiographic acquisition system software or in specific software for this purpose. The use of computed tomography is detailed for the treatment plan or prognosis, in dental implant treatment planning, endodontics (canal morphology, inflammatory lesions, root vertical fractures), maxillofacial surgery (impacted teeth and third molars evaluation, temporomandibular joint assessment), with presentation of clinical cases for illustration.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 159.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Van der Stelt PF. Better imaging: the advantages of digital radiography. J Am Dent Assoc. 2008;139(Suppl):7s–13s.

    Article  Google Scholar 

  2. van der Stelt PF. Principles of digital imaging. Dent Clin N Am. 2000;44(2):237–48. v

    PubMed  Google Scholar 

  3. van der Stelt PF. Filmless imaging: the uses of digital radiography in dental practice. J Am Dent Assoc. 2005;136(10):1379–87.

    Article  Google Scholar 

  4. Heo MS, Choi DH, Benavides E, Huh KH, Yi WJ, Lee SS, et al. Effect of bit depth and kVp of digital radiography for detection of subtle differences. Oral Surg Oral Med Oral Pathol Oral Radiol Endod. 2009;108(2):278–83.

    Article  Google Scholar 

  5. Sanderink GC, Miles DA. Intraoral detectors. CCD, CMOS, TFT, and other devices. Dent Clin N Am. 2000;44(2):249–55. v

    PubMed  Google Scholar 

  6. Tsuchida R, Araki K, Endo A, Funahashi I, Okano T. Physical properties and ease of operation of a wireless intraoral x-ray sensor. Oral Surg Oral Med Oral Pathol Oral Radiol Endod. 2005;100(5):603–8.

    Article  Google Scholar 

  7. Wenzel A, Moystad A. Work flow with digital intraoral radiography: a systematic review. Acta Odontol Scand. 2010;68(2):106–14.

    Article  Google Scholar 

  8. Yoshiura K, Nakayama E, Shimizu M, Goto TK, Chikui T, Kawazu T, et al. Effects of the automatic exposure compensation on the proximal caries diagnosis. Dentomaxillofac Radiol. 2005;34(3):140–4.

    Article  Google Scholar 

  9. Galvao NS, Nascimento EHL, Lima CAS, Freitas DQ, Haiter-Neto F, Oliveira ML. Can a high-density dental material affect the automatic exposure compensation of digital radiographic images? Dentomaxillofac Radiol. 2019;48(3):20180331.

    Article  Google Scholar 

  10. Mozzo P, Procacci C, Tacconi A, Martini PT, Andreis IA. A new volumetric CT machine for dental imaging based on the cone-beam technique: preliminary results. Eur Radiol. 1998;8(9):1558–64.

    Article  Google Scholar 

  11. Bornstein MM, Horner K, Jacobs R. Use of cone beam computed tomography in implant dentistry: current concepts, indications and limitations for clinical practice and research. Periodontol. 2017;73(1):51–72.

    Article  Google Scholar 

  12. Guerrero ME, Noriega J, Jacobs R. Preoperative implant planning considering alveolar bone grafting needs and complication prediction using panoramic versus CBCT images. Imaging Sci Dent. 2014;44(3):213–20.

    Article  Google Scholar 

  13. Harris D, Horner K, Gröndahl K, Jacobs R, Helmrot E, Benic GI, et al. E.a.O. guidelines for the use of diagnostic imaging in implant dentistry 2011. A consensus workshop organized by the European Association for Osseointegration at the Medical University of Warsaw. Clin Oral Implants Res. 2012;23(11):1243–53.

    Article  Google Scholar 

  14. Scarfe WCA. Christos maxillofacial cone beam computed tomography: principles, techniques and clinical applications, vol. 2018. 1st ed: Springer; 2018. p. 1242.

    Google Scholar 

  15. Hermann L, Wenzel A, Schropp L, Matzen LH. Impact of CBCT on treatment decision related to surgical removal of impacted maxillary third molars: does CBCT change the surgical approach? Dentomaxillofac Radiol. 2019;48(8):20190209.

    Article  Google Scholar 

  16. Matzen LH, Petersen LB, Schropp L, Wenzel A. Mandibular canal-related parameters interpreted in panoramic images and CBCT of mandibular third molars as risk factors to predict sensory disturbances of the inferior alveolar nerve. Int J Oral Maxillofac Surg. 2019;48(8):1094–101.

    Article  Google Scholar 

  17. Matzen LH, Villefrance JS, Nørholt SE, Bak J, Wenzel A. Cone beam CT and treatment decision of mandibular third molars: removal vs. coronectomy-a 3-year audit. Dentomaxillofac Radiol. 2020;49(3):20190250.

    Article  Google Scholar 

  18. Larheim TA, Abrahamsson AK, Kristensen M, Arvidsson LZ. Temporomandibular joint diagnostics using CBCT. Dentomaxillofac Radiol. 2015;44(1):20140235.

    Article  Google Scholar 

  19. Guo Y, Qiao X, Yao S, Li T, Jiang N, Peng C. CBCT analysis of changes in dental occlusion and temporomandibular joints before and after MEAW Orthotherapy in patients with nonlow angle of skeletal class III. Biomed Res Int. 2020;2020:7238263.

    PubMed  PubMed Central  Google Scholar 

  20. Imanimoghaddam M, Madani AS, Mahdavi P, Bagherpour A, Darijani M, Ebrahimnejad H. Evaluation of condylar positions in patients with temporomandibular disorders: a cone-beam computed tomographic study. Imaging Sci Dent. 2016;46(2):127–31.

    Article  Google Scholar 

  21. Patel A, Tee BC, Fields H, Jones E, Chaudhry J, Sun Z. Evaluation of cone- beam computed tomography in the diagnosis of simulated small osseous defects in the mandibular condyle. Am J Orthod Dentofacial Orthop. 2014;145(2):143–56.

    Article  Google Scholar 

  22. Dumbuya A, Gomes AF, Marchini L, Zeng E, Comnick CL, Melo SLS. Bone changes in the temporomandibular joints of older adults: a cone-beam computed tomography study. Spec Care Dentist. 2020;40(1):84–9.

    Article  Google Scholar 

  23. Walewski LA, Tolentino ES, Yamashita FC, Iwaki LCV, da Silva MC. Cone beam computed tomography study of osteoarthritic alterations in the osseous components of temporomandibular joints in asymptomatic patients according to skeletal pattern, gender, and age. Oral Surg Oral Med Oral Pathol Oral Radiol. 2019;128(1):70–7.

    Article  Google Scholar 

  24. dos Anjos Pontual ML, Freire JS, Barbosa JM, Frazao MA, dos Anjos Pontual A. Evaluation of bone changes in the temporomandibular joint using cone beam CT. Dentomaxillofac Radiol. 2012;41(1):24–9.

    Article  Google Scholar 

  25. Nascimento EHL, Fontenele RC, Santaella GM, Freitas DQ. Difference in the artefacts production and the performance of the metal artefact reduction (MAR) tool between the buccal and lingual cortical plates adjacent to zirconium dental implant. Dentomaxillofac Radiol. 2019;48(8):20190058.

    Article  Google Scholar 

  26. Candemil AP, Salmon B, Freitas DQ, Haiter-Neto F, Oliveira ML. Distribution of metal artifacts arising from the exomass in small field-of-view cone beam computed tomography scans. Oral Surg Oral Med Oral Pathol Oral Radiol. 2020;130:116.

    Article  Google Scholar 

  27. Candemil AP, Salmon B, Freitas DQ, Ambrosano GMB, Haiter-Neto F, Oliveira ML. Are metal artefact reduction algorithms effective to correct cone beam CT artefacts arising from the exomass? Dentomaxillofac Radiol. 2019;48(3):20180290.

    Article  Google Scholar 

  28. Pauwels R, Araki K, Siewerdsen JH, Thongvigitmanee SS. Technical aspects of dental CBCT: state of the art. Dentomaxillofac Radiol. 2015;44(1):20140224.

    Article  Google Scholar 

  29. Lofthag-Hansen S, Thilander-Klang A, Grondahl K. Evaluation of subjective image quality in relation to diagnostic task for cone beam computed tomography with different fields of view. Eur J Radiol. 2011;80(2):483–8.

    Article  Google Scholar 

  30. Bechara B, McMahan CA, Noujeim M, Faddoul T, Moore WS, Teixeira FB, et al. Comparison of cone beam CT scans with enhanced photostimulated phosphor plate images in the detection of root fracture of endodontically treated teeth. Dentomaxillofac Radiol. 2013;42(7):20120404.

    Article  Google Scholar 

  31. Guldner C, Ningo A, Voigt J, Diogo I, Heinrichs J, Weber R, et al. Potential of dosage reduction in cone-beam-computed tomography (CBCT) for radiological diagnostics of the paranasal sinuses. Eur Arch Otorhinolaryngol. 2013;270(4):1307–15.

    Article  Google Scholar 

  32. Melo SL, Bortoluzzi EA, Abreu M Jr, Correa LR, Correa M. Diagnostic ability of a cone-beam computed tomography scan to assess longitudinal root fractures in prosthetically treated teeth. J Endod. 2010;36(11):1879–82.

    Article  Google Scholar 

  33. Dalili Z, Taramsari M, Mousavi Mehr SZ, Salamat F. Diagnostic value of two modes of cone-beam computed tomography in evaluation of simulated external root resorption: an in vitro study. Imaging Sci Dent. 2012;42(1):19–24.

    Article  Google Scholar 

  34. Icen M, Orhan K, Seker C, Geduk G, Cakmak Ozlu F, Cengiz MI. Comparison of CBCT with different voxel sizes and intraoral scanner for detection of periodontal defects: an in vitro study. Dentomaxillofac Radiol. 2020;49:20190197.

    Article  Google Scholar 

  35. Kuhnisch J, Anttonen V, Duggal MS, Spyridonos ML, Rajasekharan S, Sobczak M, et al. Best clinical practice guidance for prescribing dental radiographs in children and adolescents: an EAPD policy document. Eur Arch Paediatr Dent. 2019;21:375.

    Article  Google Scholar 

  36. Radiation protection no. 172: cone beam CT for dental and maxillofacial radiology (evidence-based guidelines), 2012.

    Google Scholar 

  37. Oenning AC, Jacobs R, Pauwels R, Stratis A, Hedesiu M, Salmon B. Cone- beam CT in paediatric dentistry: DIMITRA project position statement. Pediatr Radiol. 2018;48(3):308–16.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

dos Santos Accioly Lins, C.C., de Moraes Ramos-Perez, F.M., Pontual, A.d.A., dos Anjos Pontual, M.L., do Nascimento, E.H.L. (2021). Digital Oral Radiography. In: Jain, P., Gupta, M. (eds) Digitization in Dentistry. Springer, Cham. https://doi.org/10.1007/978-3-030-65169-5_3

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-65169-5_3

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-65168-8

  • Online ISBN: 978-3-030-65169-5

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics