Skip to main content

The Role of Group VIII Metals in Hydroconversion of Lignin to Value-Added Chemicals and Biofuels

  • Chapter
  • First Online:
Catalysis for Clean Energy and Environmental Sustainability

Abstract

Biomass utilization originating from inedible farming and forest waste, as a renewable feedstock for liquid biofuels and viable products, will have important environmental and social impacts in the future. Lignocellulose, the main nonedible component of biomass, is a primordial element abundantly rich in cellulosic compounds and lignins. The conversion of cellulose and hemicellulose to biofuels and valuable platform chemicals (such as levulinic acid, formic acid, furfural, γ-valerolactone and other derivatives) has long been studied, and great progress has been made in their industrial production. Lignin being a unique raw material has gained enormous attention in the recent years being an important source for sustainable and viable products. The successful conversion of lignin into value-added chemicals involves three main processes: (1) decomposition of lignocellulose, (2) depolymerization (3) upgradation to the desirable chemicals. The choice of catalyst in either homo- or heterogeneous systems is crucial for the effective depolymerization of lignin and upgrading to desirable chemicals. Hydro-processing (hydrogenolysis, hydrogenation, hydrodeoxygenation and hydro-demethoxylation) is a highly preferred, practical method for the depolymerization leading to production of valuable products and drugs. These reactions generally occur over metals, namely, platinum, palladium, ruthenium and nickel. This chapter aims to present a holistic analysis of the role of Group VIII metals in conversion of lignin and lignin-based aromatic monomers. This simplified summary will be useful to researchers for developing heterogeneous catalyst towards effective production of industrially sound products.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 119.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 159.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Chen X, Guan W, Tsang CW, Hu H, Liang C (2019) Lignin valorizations with Ni catalysts for renewable chemicals and fuels productions. Catalysts 9:488

    Article  CAS  Google Scholar 

  2. Schutyser W, Renders T, Van den Bosch S, Koelewijn SF, Beckham GT, Sels BF (2018) Chemicals from lignin: an interplay of lignocellulose fractionation, depolymerisation, and upgrading. Chem Soc Rev 47:852–908

    Article  CAS  Google Scholar 

  3. Hernández WY, Lauwaert J, Van Der Voort P, Verberckmoes A (2017) Recent advances on the utilization of layered double hydroxides (LDHs) and related heterogeneous catalysts in a lignocellulosic-feedstock biorefinery scheme. Green Chem 19:5269–5302

    Article  Google Scholar 

  4. Sudarsanam P, Peeters E, Makshina EV, Parvulescu VI, Sels BF (2019) Advances in porous and nanoscale catalysts for viable biomass conversion. Chem Soc Rev 48:2366–2421

    Article  CAS  Google Scholar 

  5. Li C, Zhao X, Wang A, Huber GW, Zhang T (2015) Catalytic transformation of lignin for the production of chemicals and fuels. Chem Rev 115:11559–11624

    Article  CAS  Google Scholar 

  6. Zakzeski J, Bruijnincx PC, Jongerius AL, Weckhuysen BM (2010) The catalytic valorization of lignin for the production of renewable chemicals. Chem Rev 110:3552–3599

    Article  CAS  Google Scholar 

  7. Cheng C, Shen D, Gu S, Luo KH (2018) State-of-the-art catalytic hydrogenolysis of lignin for the production of aromatic chemicals. Cat Sci Technol 8:6275–6296

    Article  CAS  Google Scholar 

  8. Verma AM, Kishore N (2017) Gas phase conversion of eugenol into various hydrocarbons and platform chemicals. RSC Adv 7:2527–2543

    Article  CAS  Google Scholar 

  9. Yang L, SeshanK LY (2017) A review on thermal chemical reactions of lignin model compounds. Catal Today 298:276–297

    Article  CAS  Google Scholar 

  10. Nimmanwudipong T, Runnebaum RC, Ebeler SE, Block DE, Gates BC (2012) Upgrading of lignin-derived compounds: reactions of eugenol catalyzed by HY zeolite and by Pt/γ-Al2O3. Catal Lett 142:151–160

    Article  CAS  Google Scholar 

  11. Demirbas A (2011) Competitive liquid biofuels from biomass. Appl Energy 88:17–28

    Article  CAS  Google Scholar 

  12. Bond GC (1968) Periodic variations in the catalytic properties of metals. Platin Met Rev 12:100–105

    CAS  Google Scholar 

  13. Rezaei PS, Shafaghat H, Daud W (2016) Aromatic hydrocarbon production by catalytic pyrolysis of palm kernel shell waste using a bifunctional Fe/HBeta catalyst: effect of lignin-derived phenolics on zeolite deactivation. Green Chem 18:684–1693

    Article  CAS  Google Scholar 

  14. Mullen CA, Boateng AA (2015) Production of aromatic hydrocarbons via catalytic pyrolysis of biomass over Fe-modified HZSM-5 zeolites. ACS Sustain Chem Eng 3:1623–1631

    Article  CAS  Google Scholar 

  15. Jia S, Cox BJ, Guo X, Zhang ZC, Ekerdt JG (2011) Hydrolytic cleavage of β-O-4 ether bonds of lignin model compounds in an ionic liquid with metal chlorides. Ind Eng Chem Res 50:849–855

    Article  CAS  Google Scholar 

  16. Zeng J, Yoo CG, Wang F, Pan X, Vermerris W, Tong Z (2015) Biomimetic fenton-catalyzed lignin depolymerization to high-value aromatics and dicarboxylic acids. ChemSusChem 8:861–871

    Article  CAS  Google Scholar 

  17. Mottweiler J, Rinesch T, Besson C, Buendia J, Bolm C (2015) Iron-catalysed oxidative cleavage of lignin and β-O-4 lignin model compounds with peroxides in DMSO. Green Chem 17:5001–5008

    Article  CAS  Google Scholar 

  18. Yoshikawa T, Shinohara S, Yagi T, Ryumon N, Nakasaka Y, Tago T, Masuda T (2014) Production of phenols from lignin-derived slurry liquid using iron oxide catalyst. Appl Catal B 146:289–297

    Article  CAS  Google Scholar 

  19. Collard FX, Blin J, Bensakhria A, Valette J (2012) Influence of impregnated metal on the pyrolysis conversion of biomass constituents. J Anal Appl Pyrol 95:213–226

    Article  CAS  Google Scholar 

  20. Bu Q, Lei H, Zacher AH, Wang L, Ren S, Liang J, Ruan R (2012) A review of catalytic hydrodeoxygenation of lignin-derived phenols from biomass pyrolysis. Bioresour Technol 124:470–477

    Article  CAS  Google Scholar 

  21. Hong Y, Hensley A, McEwen JS, Wang Y (2016) Perspective on catalytic hydrodeoxygenation of biomass pyrolysis oils: essential roles of Fe-based catalysts. Catal Lett 146:1621–1633

    Article  CAS  Google Scholar 

  22. Olcese R, Bettahar MM, Malaman B, Ghanbaja J, Tibavizco L, Petitjean D, Dufour A (2013) Gas-phase hydrodeoxygenation of guaiacol over iron-based catalysts. Effect of gases composition, iron load and supports (silica and activated carbon). Appl Catal B Environ 129:528–538

    Article  CAS  Google Scholar 

  23. Olcese RN, François J, Bettahar MM, Petitjean D, Dufour A (2013) Hydrodeoxygenation of guaiacol, a surrogate of lignin pyrolysis vapors, over iron based catalysts: kinetics and modeling of the lignin to aromatics integrated process. Energ Fuel 27:975–984

    Article  CAS  Google Scholar 

  24. Guan G, Kaewpanha M, Hao X, Zhu AM, Kasai Y, Kakuta S, Abudula A (2013) Steam reforming of tar derived from lignin over pompom-like potassium-promoted iron-based catalysts formed on calcined scallop shell. Bioresour Technol 139:280–284

    Article  CAS  Google Scholar 

  25. Liu X, Jia W, Xu G, Zhang Y, Fu Y (2017) Selective hydrodeoxygenation of lignin-derived phenols to cyclohexanols over Co-based catalysts. ACS Sustain Chem Eng 5:8594–8601

    Article  CAS  Google Scholar 

  26. Xie W, Liang J, Morgan HM Jr, Zhang X, Wang K, Mao H, Bu Q (2018) Ex-situ catalytic microwave pyrolysis of lignin over Co/ZSM-5 to upgrade bio-oil. J Anal Appl Pyrol 132:163–170

    Article  CAS  Google Scholar 

  27. Wu C, Wang Z, Huang J, Williams PT (2013) Pyrolysis/gasification of cellulose, hemicellulose and lignin for hydrogen production in the presence of various nickel-based catalysts. Fuel 106:697–706

    Article  CAS  Google Scholar 

  28. Akubo K, Nahil MA, Williams PT (2019) Pyrolysis-catalytic steam reforming of agricultural biomass wastes and biomass components for production of hydrogen/syngas. J Energy Inst 92:1987–1996

    Article  CAS  Google Scholar 

  29. Schmitt CC, Raffelt K, Zimina A, Krause B, Otto T, Rapp M, Dahmen N (2018) Hydrotreatment of fast pyrolysis bio-oil fractions over nickel-based catalyst. Top Catal 61:1769–1782

    Article  CAS  Google Scholar 

  30. Ben H, Ragauskas AJ (2011) Pyrolysis of kraft lignin with additives. Energy Fuels 25:4662–4668

    Article  CAS  Google Scholar 

  31. Ma T, Liu Y, Yu H (2017) Catalytic characteristics of pyrolysis volatile matter from biomass/biomass components on a novel Ni-based catalyst supported by iron slag. J Renew Sustain Energy 9:063101

    Article  CAS  Google Scholar 

  32. Yin W, Venderbosch RH, He S, Bykova MV, Khromova SA, Yakovlev VA, Heeres HJ (2017) Mono-, bi-, and tri-metallic Ni-based catalysts for the catalytic hydrotreatment of pyrolysis liquids. Biomass Convers Bior 7:361–376

    Article  CAS  Google Scholar 

  33. Alda-Onggar M, Mäki-Arvela P, Aho A, Simakova IL, Murzin DY (2019) Hydrodeoxygenation of phenolic model compounds over zirconia supported Ir and Ni-catalysts. React Kinet Mech Cat 126:737–759

    Article  CAS  Google Scholar 

  34. Zhang J, Teo J, Chen X, Asakura H, Tanaka T, Teramura K, Yan N (2014) A series of NiM (M = Ru, Rh, and Pd) bimetallic catalysts for effective lignin hydrogenolysis in water. ACS Catal 4:1574–1583

    Article  CAS  Google Scholar 

  35. Yadagiri J, Koppadi KS, Enumula SS, Vakati V, Kamaraju SRR, Burri DR, Somaiah PV (2018) Ni/KIT-6 catalysts for hydrogenolysis of lignin-derived diphenyl ether. J Chem Sci 130:106

    Article  CAS  Google Scholar 

  36. Ma H, Li H, Zhao W, Li L, Liu S, Long J, Li X (2019) Selective depolymerization of lignin catalyzed by nickel supported on zirconium phosphate. Green Chem 21:658–668

    Article  CAS  Google Scholar 

  37. Zhang C, Lu J, Zhang X, MacArthur K, Heggen M, Li H, Wang F (2016) Cleavage of the lignin β-O-4 ether bond via a dehydroxylation–hydrogenation strategy over a NiMosulfide catalyst. Green Chem 18:6545–6555

    Article  CAS  Google Scholar 

  38. Song Q, Wang F, Cai J, Wang Y, Zhang J, Yu W, Xu J (2013) Lignin depolymerization (LDP) in alcohol over nickel-based catalysts via a fragmentation–hydrogenolysis process. Energy Environ Sci 6:994–1007

    Article  CAS  Google Scholar 

  39. Wang X, Rinaldi R (2016) Bifunctional Ni catalysts for the one-pot conversion of Organosolv lignin into cycloalkanes. Catal Today 269:48–55

    Article  CAS  Google Scholar 

  40. Jin S, Xiao Z, Chen X, Wang L, Guo J, Zhang M, Liang C (2015) Cleavage of lignin-derived 4-O-5 aryl ethers over nickel nanoparticles supported on niobic acid-activated carbon composites. Ind Eng Chem Res 54:2302–2310

    Article  CAS  Google Scholar 

  41. Xu C, Tang SF, Sun X, Sun Y, Li G, Qi J, Li X (2017) Investigation on the cleavage of β-O-4 linkage in dimeric lignin model compound over nickel catalysts supported on ZnO-Al2O3 composite oxides with varying Zn/Al ratios. Catal Today 298:89–98

    Article  CAS  Google Scholar 

  42. Long J, Shu S, Wu Q, Yuan Z, Wang T, Xu Y, Ma L (2015) Selective cyclohexanol production from the renewable lignin derived phenolic chemicals catalyzed by Ni/MgO. Energy Convers Manag 105:570–577

    Article  CAS  Google Scholar 

  43. Jin S, Xiao Z, Li C, Chen X, Wang L, Xing J, Liang C (2014) Catalytic hydrodeoxygenation of anisole as lignin model compound over supported nickel catalysts. Catal Today 234:125–132

    Article  CAS  Google Scholar 

  44. Sankaranarayanan TM, Berenguer A, Ochoa-Hernández C, Moreno I, Jana P, Coronado JM, Pizarro P (2015) Hydrodeoxygenation of anisole as bio-oil model compound over supported Ni and Co catalysts: effect of metal and support properties. Catal. Today 243:163–172

    Article  CAS  Google Scholar 

  45. Zhang X, Zhang Q, Wang T, Ma L, Yu Y, Chen L (2013) Hydrodeoxygenation of lignin-derived phenolic compounds to hydrocarbons over Ni/SiO2–ZrO2 catalysts. Bioresources 134:73–80

    Article  CAS  Google Scholar 

  46. Verziu M, Tirsoaga A, Cojocaru B, Bucur C, Tudora B, Richel A, Mikkola JP (2018) Hydrogenolysis of lignin over Ru-based catalysts: the role of the ruthenium in a lignin fragmentation process. Mol Catal 450:65–76

    Article  CAS  Google Scholar 

  47. Wu H, Song J, Xie C, Wu C, Chen C, Han B (2018) Efficient and mild transfer hydrogenolytic cleavage of aromatic ether bonds in lignin-derived compounds over Ru/C. ACS Sustain Chem Eng 6:2872–2877

    Article  CAS  Google Scholar 

  48. Gomez-Monedero B, Faria J, BimbelaF RMP (2017) Catalytic hydroprocessing of lignin β-O-4 ether bond model compound phenethyl phenyl ether over ruthenium catalysts. Biomass Convers Bior 7:385–398

    Article  CAS  Google Scholar 

  49. Limarta SO, Ha JM, Park YK, Lee H, Suh DJ, Jae J (2018) Efficient depolymerization of lignin in supercritical ethanol by a combination of metal and base catalysts. J Ind Eng Chem 57:45–54

    Article  CAS  Google Scholar 

  50. Chen MY, Huang YB, Pang H, Liu XX, Fu Y (2015) Hydrodeoxygenation of lignin-derived phenols into alkanes over carbon nanotube supported Ru catalysts in biphasic systems. Green Chem 17:1710–1717

    Article  CAS  Google Scholar 

  51. Bjelić A, Grilc M, Gyergyek S, Kocjan A, Makovec D, Ikozar B (2018) Catalytic hydrogenation, hydrodeoxygenation, and hydrocracking processes of a lignin monomer model compound eugenol over magnetic Ru/C–Fe2O3 and mechanistic reaction microkinetics. Catalysts 8:425

    Article  CAS  Google Scholar 

  52. Mu W, Ben H, Ragauskas A, Deng Y (2013) Lignin pyrolysis components and upgrading technology review. Bioenergy Res 6:1183–1204

    Article  CAS  Google Scholar 

  53. Ohta H, Kobayashi H, Hara K, Fukuoka A (2011) Hydrodeoxygenation of phenols as lignin models under acid-free conditions with carbon-supported platinum catalysts. Chem Commun 47:12209–12211

    Article  CAS  Google Scholar 

  54. Mu W, Ben H, Du X, Zhang X, Hu F, Liu W, Deng Y (2014) Noble metal catalyzed aqueous phase hydrogenation and hydrodeoxygenation of lignin-derived pyrolysis oil and related model compounds. Bioresour Technol 173:6–10

    Article  CAS  Google Scholar 

  55. Lin YC, Li CL, Wan HP, Lee HT, Liu CF (2011) Catalytic hydrodeoxygenation of guaiacol on Rh-based and sulfided CoMo and NiMo catalysts. Energy Fuel 25:890–896

    Article  CAS  Google Scholar 

  56. He Y, Bie Y, Lehtonen J, Liu R, Cai J (2019) Hydrodeoxygenation of guaiacol as a model compound of lignin-derived pyrolysis bio-oil over zirconia-supported Rh catalyst: process optimization and reaction kinetics. Fuel 239:1015–1027

    Article  CAS  Google Scholar 

  57. Nan W, Krishna CR, Kim TJ, Wang LJ, Mahajan D (2014) Catalytic upgrading of switchgrass-derived pyrolysis oil using supported ruthenium and rhodium catalysts. Energ Fuel 28:4588–4595

    Article  CAS  Google Scholar 

  58. Jie-wang Y, Gui-zhen F, Chun-de J (2012) Hydrogenation of alkali lignin catalyzed by Pd/C. Apcbee Procedia 3:53–59

    Article  CAS  Google Scholar 

  59. Gao F, Webb JD, Sorek H, WemmerDE HJF (2016) Fragmentation of lignin samples with commercial Pd/C under ambient pressure of hydrogen. ACS Catal 6:7385–7392

    Article  CAS  Google Scholar 

  60. Galkin MV, Sawadjoon S, Rohde V, DawangeM SJS (2014) Mild heterogeneous palladium-catalyzed cleavage of β-O-4′-ether linkages of lignin model compounds and native lignin in air. ChemCatChem 6:179–184

    Article  CAS  Google Scholar 

  61. Galkin MV, Dahlstrand C, Samec JS (2015) Mild and robust redox-neutral Pd/C-catalyzed Lignol β-O-4′ bond cleavage through a low-energy-barrier pathway. ChemSusChem 8:2187–2192

    Article  CAS  Google Scholar 

  62. Liguori L, Barth T (2011) Palladium-Nafion SAC-13 catalysed depolymerisation of lignin to phenols in formic acid and water. J Anal Appl Pyrol 92:477–484

    Article  CAS  Google Scholar 

  63. Deng W, Zhang H, Wu X, Li R, Zhang Q, Wang Y (2015) Oxidative conversion of lignin and lignin model compounds catalyzed by CeO2-supported Pd nanoparticles. Green Chem 17:5009–5018

    Article  CAS  Google Scholar 

  64. Qin Y, Wang H, Ruan H, Feng M, Yang B (2018) High catalytic efficiency of lignin depolymerization over low Pd-zeolite Y loading at mild temperature. Front Energy Res 6:2

    Article  Google Scholar 

  65. Gillet S, Aguedo M, Petitjean L, Morais ARC, da Costa Lopes AM, Łukasik RM, Anastas PT (2017) Lignin transformations for high value applications: towards targeted modifications using green chemistry. Green Chem 19:4200–4233

    Article  CAS  Google Scholar 

  66. Zhang JW, Cai Y, Lu GP, Cai C (2016) Facile and selective hydrogenolysis of β-O-4 linkages in lignin catalyzed by Pd–Ni bimetallic nanoparticles supported on ZrO2. Green Chem 18:6229–6235

    Article  CAS  Google Scholar 

  67. Haibach MC, Lease N, Goldman AS (2014) Catalytic cleavage of ether C-O bonds by pincer iridium complexes. Angew Chem 53:10160–10163

    Article  CAS  Google Scholar 

  68. Lancefield CS, Teunissen LW, WeckhuysenBM BPC (2018) Iridium-catalysed primary alcohol oxidation and hydrogen shuttling for the depolymerisation of lignin. Green Chem 20:3214–3221

    Article  CAS  Google Scholar 

  69. Jongerius AL, BruijnincxPC WBM (2013) Liquid-phase reforming and hydrodeoxygenation as a two-step route to aromatics from lignin. Green Chem 15:3049–3056

    Article  CAS  Google Scholar 

  70. Besse X, Schuurman Y, Guilhaume N (2017) Reactivity of lignin model compounds through hydrogen transfer catalysis in ethanol/water mixtures. Appl Catal B 209:265–272

    Article  CAS  Google Scholar 

  71. Hu J, Zhang S, Xiao R, Jiang X, Wang Y, Sun Y, Lu P (2019) Catalytic transfer hydrogenolysis of lignin into monophenols over platinum-rhenium supported on titanium dioxide using isopropanol as in situ hydrogen source. Bioresour Technol 279:228–233

    Article  CAS  Google Scholar 

  72. Xu W, Miller SJ, Agrawal PK, Jones CW (2012) Depolymerization and hydrodeoxygenation of switchgrass lignin with formic acid. ChemSusChem 5:667–675

    Article  CAS  Google Scholar 

  73. Ouyang X, Huang X, Zhu J, Boot MD, Hensen EJ (2019) Catalytic conversion of lignin in woody biomass into phenolic monomers in methanol/water mixtures without external hydrogen. ACS Sustain Chem Eng 7:13764–13773

    Article  CAS  Google Scholar 

  74. Shimanskaya E, Sulman M, Tiamina I, Sidorov A, MolchanovV SE (2019) Catalytic hydrogenolysis of softwood sawdust. Chem Eng Trans 74:229–234

    Google Scholar 

  75. Shi D, Vohs JM (2019) J Phys Energy 1:015003

    Article  CAS  Google Scholar 

  76. Bouxin FP, McVeigh A, Tran F, Westwood NJ, Jarvis MC, Jackson SD (2015) Catalytic depolymerisation of isolated lignins to fine chemicals using a Pt/alumina catalyst: part 1—impact of the lignin structure. Green Chem 17:1235–1242

    Article  CAS  Google Scholar 

Download references

Acknowledgements

Authors thank the DST-SERB-CRG (Project No: CRG/2019/004624) and the Central University of Kerala for the financial support. Ms. Sreenavya is grateful to the Central University of Kerala for her fellowship, and Ms. Neethu is thankful to the CSIR for her Junior Research Fellowship.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. Sakthivel .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Sreenavya, A., Neethu, P.P., Sakthivel, A. (2021). The Role of Group VIII Metals in Hydroconversion of Lignin to Value-Added Chemicals and Biofuels. In: Pant, K.K., Gupta, S.K., Ahmad, E. (eds) Catalysis for Clean Energy and Environmental Sustainability. Springer, Cham. https://doi.org/10.1007/978-3-030-65017-9_23

Download citation

Publish with us

Policies and ethics