Skip to main content

An Ultra-low-Power Integrated Heartbeat Detector for Wearable Sensors

  • Conference paper
  • First Online:
Body Area Networks. Smart IoT and Big Data for Intelligent Health (BODYNETS 2020)

Abstract

To optimize energy consumption in wearable sensor networks, an efficient scheme is to set the sensors in sleep mode and wake them up to engage communication. However, synchronicity between the sensors needs to be assured by always-on local oscillators. This work proposes a different topology that takes advantage of the heart beat to wake-up wearable sensors. The electrocardiogram (ECG) is detected by two probes and then converted into a pulse signal. Using 28-nm FD-SOI CMOS technology, this solution is implemented on a circuit consuming 19 nW at a 900 mV supply voltage, hence suitable for long term and wearable applications.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Benarrouch, R., et al.: Heartbeat-based synchronization scheme for the human intranet: modeling and analysis (2020). http://arxiv.org/abs/2005.05915

  2. Berwal, D., Vandana, C., Dewan, S., Jiji, C., Baghini, M.: Motion artifact removal in ambulatory ECG signal for heart rate variability analysis. IEEE Sens. J. 19(24), 12432–12442 (2019). https://doi.org/10.1109/JSEN.2019.2939391

    Article  Google Scholar 

  3. Bose, S., Shen, B., Johnston, M.L.: A 20 \(\upmu \)W heartbeat detection system-on-chip powered by human body heat for self-sustaining wearable healthcare. In: 2020 IEEE International Solid-State Circuits Conference - (ISSCC), pp. 408–410 (2020). https://doi.org/10.1109/ISSCC19947.2020.9063071

  4. Chen, Y., et al.: An injectable 64 nW ECG mixed-signal SoC in 65 nm for arrhythmia monitoring. IEEE J. Solid State Circuits 50(1), 375–390 (2015). https://doi.org/10.1109/JSSC.2014.2364036

    Article  Google Scholar 

  5. Dong, Y., et al.: A 1.8 \(\upmu \)W 32 nV/\(\sqrt{{\rm H}}\)z current-reuse capacitively-coupled instrumentation amplifier for EEG detection. In: 2017 IEEE International Symposium on Circuits and Systems (ISCAS), pp. 1–4, May 2017. https://doi.org/10.1109/ISCAS.2017.8050494

  6. Goldberger, A., et al.: PhysioBank, PhysioToolkit, and PhysioNet: components of a new research resource for complex physiologic signals. Circulation 23(101), e215–e220 (2003). https://doi.org/10.1161/01.CIR.101.23.e215

  7. Ha, H., et al.: A bio-impedance readout IC with digital-assisted baseline cancellation for two-electrode measurement. IEEE J. Solid State Circuits 54(11), 2969–2979 (2019). https://doi.org/10.1109/JSSC.2019.2939077

    Article  Google Scholar 

  8. He, D.D., Sodini, C.G.: A 58 nW ECG ASIC with motion-tolerant heartbeat timing extraction for wearable cardiovascular monitoring. IEEE Trans. Biomed. Circuits Syst. 9(3), 370–376 (2015). https://doi.org/10.1109/TBCAS.2014.2346761

    Article  Google Scholar 

  9. Li, H., Tan, J.: Heartbeat-driven medium-access control for body sensor networks. IEEE Trans. Inf. Technol. Biomed. 14(1), 44–51 (2010). https://doi.org/10.1109/TITB.2009.2028136

  10. Izumi, S., et al.: Normally off ECG SoC with non-volatile MCU and noise tolerant heartbeat detector. IEEE Trans. Biomed. Circuits Syst. 9(5), 641–651 (2015). https://doi.org/10.1109/TBCAS.2015.2452906

    Article  Google Scholar 

  11. Larras, B., Frappé, A.: On the distribution of clique-based neural networks for edge AI. IEEE J. Emerg. Sel. Top. Circuits Syst. 1 (2020). https://doi.org/10.1109/JETCAS.2020.3023481

  12. Laurijssen, D., Saeys, W., Truijen, S., Daems, W., Steckel, J.: Synchronous wireless body sensor network enabling human body pose estimation. IEEE Access 7, 49341–49351 (2019). https://doi.org/10.1109/ACCESS.2019.2910636

    Article  Google Scholar 

  13. McSharry, P., Clifford, A., Tarassenko, L., Smith, L.: A dynamical model for generating synthetic electrocardiogram signals. IEEE Trans. Biomed. Eng. 3(50), 289–294 (2003). https://doi.org/10.1109/TBME.2003.808805

    Article  Google Scholar 

  14. Xiang, J., Dong, Y., Xue, X., Xiong, H.: Electronics of a wearable ECG with level crossing sampling and human body communication. IEEE Trans. Biomed. Circuits Syst. 13(1), 68–79 (2019). https://doi.org/10.1109/TBCAS.2018.2879818

    Article  Google Scholar 

  15. Yan, L., et al.: A 680nA ECG acquisition IC for leadless pacemaker applications. IEEE Trans. Biomed. Circuits Syst. 8(6), 779–786 (2014). https://doi.org/10.1109/TBCAS.2014.2377073

    Article  Google Scholar 

  16. Yoo, J., Yan, L., Lee, S., Kim, Y., Yoo, H.: A 5.2 mW self-configured wearable body sensor network controller and a 12\(\upmu \)W wirelessly powered sensor for a continuous health monitoring system. IEEE J. Solid State Circuits 45(1), 178–188 (2010). https://doi.org/10.1109/JSSC.2009.2034440

  17. Zhang, J., Zhang, H., Sun, Q., Zhang, R.: A low-noise, low-power amplifier with current-reused OTA for ECG recordings. IEEE Trans. Biomed. Circuits Syst. 12(3), 700–708 (2018). https://doi.org/10.1109/TBCAS.2018.2819207

    Article  Google Scholar 

Download references

Acknowledgment

This work has been initiated in the frame of the Human Body Intranet collaborative project between STMicroelectronics, BWRC at UC Berkeley and IEMN. The authors wish to acknowledge Andreia Cathelin, Jan Rabaey and Andreas Kaiser for their support. This work was supported in part by the European CHIST-ERA JEDAI program under number ANR-19-CHR3-0005-01.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Benoit Larras .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 ICST Institute for Computer Sciences, Social Informatics and Telecommunications Engineering

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Gautier, A., Dael, M., Benarrouch, R., Larras, B., Frappé, A. (2020). An Ultra-low-Power Integrated Heartbeat Detector for Wearable Sensors. In: Alam, M.M., Hämäläinen, M., Mucchi, L., Niazi, I.K., Le Moullec, Y. (eds) Body Area Networks. Smart IoT and Big Data for Intelligent Health. BODYNETS 2020. Lecture Notes of the Institute for Computer Sciences, Social Informatics and Telecommunications Engineering, vol 330. Springer, Cham. https://doi.org/10.1007/978-3-030-64991-3_14

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-64991-3_14

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-64990-6

  • Online ISBN: 978-3-030-64991-3

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics