Skip to main content

Ratchet Dimer Brownian Motor with Hydrodynamic Interactions

  • Chapter
  • First Online:
Principles of Brownian and Molecular Motors

Part of the book series: Springer Series in Biophysics ((BIOPHYSICS,volume 21))

  • 487 Accesses

Abstract

We use the Brownian dynamics with hydrodynamic interactions simulation in order to describe the movement of an elastically coupled dimer Brownian motor in a ratchet potential. The only external forces considered in our system were the load, the random thermal noise and an unbiased thermal fluctuation. We observe differences in the dynamic behaviour if hydrodynamic interactions are considered as compared to the case without them.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Bibliography

  1. Reimann, P., Hänggi, P.: Materials science and processing. Introduction to the physics of Brownian motors. Appl. Phys. A 75(2), 169–178 (2002)

    Google Scholar 

  2. Wang, H.Y., Bao, J.D.: The roles of ratchet in transport of two coupled particles. Phys. A 337, 13–26 (2004)

    Article  Google Scholar 

  3. Wang, H.Y., Bao, J.D.: Cooperation behavior in transport process of coupled Brownian motors. Phys. A 357, 373–382 (2005)

    Article  Google Scholar 

  4. Wang, H.Y., Bao, J.D.: Transport coherence in coupled Brownian ratchet. Phys. A 374, 33–40 (2007)

    Article  Google Scholar 

  5. Fornés, J.A.: An oscillating electric field with thermal noise increases the rotational diffusion and drives rotation in a dipole. J. Colloid Interface Sci. 281, 236–239 (2005)

    Article  ADS  Google Scholar 

  6. von Gehlen, S., Evstigneev, M., Reimann, P.: Dynamics of a dimer in a symmetric potential: Ratchet effect generated by an internal degree of freedom. Phys. Rev. E 77, 031136 (2008)

    Article  ADS  Google Scholar 

  7. Lipowsky, R., Chai, Y., Klumpp, S., Liepelt, S., Müller, M.J.I.: Molecular motor traffic: from biological nanomachines to macroscopic transport. Phys. A 372, 34–51 (2006)

    Article  Google Scholar 

  8. Tao, Y.G., Kapralb, R.: Design of chemically propelled nanodimer motors. J. Chem. Phys. 128, 164518 (2008)

    Article  ADS  Google Scholar 

  9. Howard, J.: Mechanics of Motor Proteins and the Cytoskeleton. Sinauer Associates, Sunderland (2001)

    Google Scholar 

  10. Block, S.M.: Nanometres and piconewtons: the macromolecular mechanics of kinesinTrends. Cell Biol. 5, 169–175 (1995)

    ADS  Google Scholar 

  11. Visscher, K., Schnitzer, M.J., Block, S.M.: Single kinesin molecules studied with a molecular force clamp. Nature 400, 184–189 (1999)

    Article  ADS  Google Scholar 

  12. Schnitzer, M.J., Visscher, K., Block, S.M.: Force production by single kinesin motors. Nat. Cell Biol. 2, 718–723 (2000)

    Article  Google Scholar 

  13. Speer, D., Eichhorn, R., Evstigneev, M., Reimann, P.: Dimer motion on a periodic substrate: spontaneous symmetry breaking and absolute negative mobility. Phys. Rev. E 85, 061132 (2012)

    Article  ADS  Google Scholar 

  14. Zimmermann, E., Seifert, U.: Efficiencies of a molecular motor: a generic hybrid model applied to the F1-ATPase. New J. Phys. 14, 103023 (2012)

    Article  Google Scholar 

  15. Pinkoviezky, I., Gov, N.S.: Modelling interacting molecular motors with an internal degree of freedom. New J. Phys. 15, 025009 (2013)

    Article  ADS  Google Scholar 

  16. Ermak, D.L., McCammon, J.A.: Brownian dynamics with hydrodynamic interactions. J. Chem. Phys. 69(4), 1352–1360 (1978)

    Article  ADS  Google Scholar 

  17. Kemps, J.A.L., Bhattacharjee, S.: Particle tracking model for colloid transport near planar surfaces covered with spherical asperities. Langmuir 25(12), 6887–6897 (2009)

    Article  Google Scholar 

  18. Günther, S., Kruse, K.: A simple self-organized swimmer driven by molecular motors. Eur. Phys. Lett. 84, 68002 (2008)

    Article  ADS  Google Scholar 

  19. Ramia, M., Tullock, D.L., Phan-Thien, N.: The role of hydrodynamic interaction in the locomotion of microorganisms. Biophys. J. 65, 755–778 (1993)

    Article  ADS  Google Scholar 

  20. MunJu, K., Powers, T.R.: Hydrodynamic interactions between rotating helices. Phys. Rev. E 69, 061910 (2004)

    Article  ADS  Google Scholar 

  21. Fornés, J.A.: Hydrodynamic interactions induce movement against an external load in a ratchet dimer Brownian motor. J. Colloid Interface Sci. 341, 376–379 (2010)

    Article  ADS  Google Scholar 

  22. Grimm, A., Stark, H.: Hydrodynamic interactions enhance the performance of Brownian ratchets. SoftMatter 7, 3219 (2011)

    ADS  Google Scholar 

  23. Polson, J.M., Bylhouwer, B., Zuckermann, M.J., Horton, A.J., Scott, W.M.: Dynamics of a polymer in a Brownian ratchet. Phys. Rev. E 82, 051931 (2010)

    Article  ADS  Google Scholar 

  24. Dickinson, E.: Brownian dynamic with hydrodynamic interactions: the application to protein diffusional problems. Chem. Soc. Rev. 14, 421–455 (1985)

    Article  Google Scholar 

  25. Oseen, C.W.: Hydrodynamik, Akademische Verlag Leipzig (1927)

    Google Scholar 

  26. Doi, M., Edwards, S.F.: The Theory of Polymer Dynamics. Claredon Press, Oxford (1986)

    Google Scholar 

  27. https://ocw.mit.edu/courses/nuclear-engineering/22-103-microscopic-theory-of-transport-fall-2003/lecture-notes/lec3.pdf

  28. Freund, J.A., Schimansky-Geier, L.: Diffusion in discrete ratchets. Phys. Rev. E 60(2), 1304 (1999)

    Article  ADS  Google Scholar 

  29. Cubero, D., Rensoni, J.: Brownian Ratchets. Cambridge University Press, Cambridge (2016)

    Book  Google Scholar 

  30. Houtman, D., Pagonabarraga, I., Lowe, C.P., Esseling-Ozdoba, A., Emons, A.M.C., Eiser, E.: Hydrodynamic flow caused by active transport along cytoskeletal elements. Europhys. Lett. 78, 18001 (2007)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2021 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Fornés, J.A. (2021). Ratchet Dimer Brownian Motor with Hydrodynamic Interactions. In: Principles of Brownian and Molecular Motors. Springer Series in Biophysics, vol 21. Springer, Cham. https://doi.org/10.1007/978-3-030-64957-9_6

Download citation

Publish with us

Policies and ethics