Skip to main content

The Fokker-Planck Equation

  • Chapter
  • First Online:
Principles of Brownian and Molecular Motors

Part of the book series: Springer Series in Biophysics ((BIOPHYSICS,volume 21))

  • 522 Accesses

Abstract

During the last years with the studies of stochastic processes: neurons networks, molecular motors, dynamics models, anomalous diffusion, disordered media, etc, several methods have evolved to apply the Focker-Planck equation (FPE) to these phenomena. We present here the solution of the Fokker-Planck equation by the Crank-Nicholson formalism. The von Neumann amplification factor, \(\xi \left ( k\right ) \), is independent of dt, so the method is stable for any size dt. The method is suitable for modeling molecular motors because the great amount of interactions in these systems, vectors and matrices oriented methods are needed, suited to work with Matlab.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Bibliography

  1. Barkai, E., Metzler, R., Klafter, J.: From continuous time random walks to the fractional Fokker-Planck equation. Phys. Rev. E 61, 132 (2000)

    Article  ADS  MathSciNet  Google Scholar 

  2. Barkai, E.: Fractional Fokker-Planck equation, solution, and application. Phys. Rev. E 63, 046118 (2001)

    Article  ADS  Google Scholar 

  3. Zahran, M.A.: 1/2-order fractional Fokker–Planck equation on comblike model. J. Stat. Phys. 109, 1005 (2002)

    Article  ADS  MathSciNet  Google Scholar 

  4. Lenzi, E.K., Mendes, R.S., Fa, K.S., Malacarne, L.C., da Silva, L.R.: Anomalous diffusion: fractional Fokker–Planck equation and its solutions. J. Math. Phys. 44, 2179 (2003)

    Article  ADS  MathSciNet  Google Scholar 

  5. Zahran, M.A., Abulwafa, E.M., Elwakil, S.A.: The fractional Fokker–Planck equation on comb-like model. Physica A 323, 237 (2003)

    Article  ADS  MathSciNet  Google Scholar 

  6. Chechkin, A.V., Klafter, J., Sokolov, I.M.: Fractional Fokker-Planck equation for ultraslow kinetics. Europhys. Lett. 63, 326 (2003)

    Article  ADS  Google Scholar 

  7. Ren, F.Y., Liang, J.R., Qiu, W.Y., Xu, Y.: Fractional Fokker–Planck equation on heterogeneous fractal structures in external force fields and its solutions. Physica A 326, 430 (2003)

    Article  ADS  MathSciNet  Google Scholar 

  8. So, F., Liu, K.L.: A study of the subdiffusive fractional Fokker–Planck equation of bistable systems. Physica A 331, 378 (2004)

    Article  ADS  MathSciNet  Google Scholar 

  9. Stanislavsky, A.A.: Subordinated Brownian motion and its fractional Fokker–Planck equation. Phys. Scr. 67, 265 (2003)

    Article  ADS  MathSciNet  Google Scholar 

  10. Xu, Y., Ren, F.Y., Liang, J.R., Qiu, W.Y.: Stretched Gaussian asymptotic behavior for fractional Fokker–Planck equation on fractal structure in external force fields. Chaos Solitons Fractals 20, 581 (2004)

    Article  ADS  Google Scholar 

  11. Liu, F., Anh, V., Turner, I.: Numerical solution of the space fractional Fokker–Planck equation. J. Comput. Appl. Math. 166, 209 (2004)

    Article  ADS  MathSciNet  Google Scholar 

  12. Kanamaru, T., Sekine, M.: Analysis of globally connected active rotators with excitatory and inhibitory connections using the Fokker-Planck equation. Phys. Rev. E. 67, 031916 Part 1 (2003)

    Google Scholar 

  13. Trigger, S.A.: Fokker-Planck equation for Boltzmann-type and active particles: transfer probability approach. Phys. Rev. E 67, 046403 Part 2 (2003)

    Google Scholar 

  14. Lozinski, A., Chauviere, U.: A fast solver for Fokker–Planck equation applied to viscoelastic flows calculations: 2D FENE model. J. Comput. Phys. 189, 607 (2003)

    Article  ADS  MathSciNet  Google Scholar 

  15. Lo, C.F.: Exact propagator of the Fokker–Planck equation with logarithmic factors in diffusion and drift terms. Phys. Lett. A 319, 110 (2003)

    Article  ADS  MathSciNet  Google Scholar 

  16. Sasaki, K.: Diffusion coefficients for two-state Brownian motors. J. Phys. Soc. Jpn. 72, 2497 (2003)

    Article  ADS  Google Scholar 

  17. Zhao, C.Y., Tan, W.H., Guo, Q.Z.: The solution of the Fokker-Planck equation of non-degenerate parametric amplific ation system for generation of squeezed light. Acta Phys. Sin. 52, 2694 (2003)

    Google Scholar 

  18. Arnold, A., Unterreiter, A.: Entropy decay of discretized fokker-planck equations I–Temporal semidiscretization. Comput. Math. Appl. 46, 1683 (2003)

    Article  MathSciNet  Google Scholar 

  19. Chhib, M., El Arroum, L., Mazroui, M., Boughaleb, Y., Ferrando, R.: Influence of the periodic potential shape on the Fokker–Planck dynamics. Physica A 331, 365 (2004)

    Article  ADS  MathSciNet  Google Scholar 

  20. Kamitani, Y., Matsuba, I.: Self-similar characteristics of neural networks based on Fokker–Planck equation. Chaos Solitons Fractals 20, 329 (2004)

    Article  ADS  Google Scholar 

  21. Nobre, F.D., Curado, E.M.F., Rowlands, G.: A procedure for obtaining general nonlinear Fokker–Planck equations. Physica A 334, 109 (2004)

    Article  ADS  MathSciNet  Google Scholar 

  22. Abe, S.: Dilatation symmetry of the Fokker-Planck equation and anomalous diffusion. Phys. Rev. E 69, 016102, Part 2 (2004)

    Google Scholar 

  23. Subramanian, G., Brady, J.F.: Multiple scales analysis of the Fokker–Planck equation for simple shear flow. Physica A 334, 343 (2004)

    Article  ADS  MathSciNet  Google Scholar 

  24. Liang, G.Y., Cao, L., Wu, D.J.: Approximate Fokker–Planck equation of system driven by multiplicative colored noises with colored cross-correlation. Physica A 335, 371 (2004)

    Article  ADS  Google Scholar 

  25. Sparber, C., Carrillo, J.A., Dolbeault, J., Markowich, P.A.: On the long-time behavior of the quantum Fokker-Planck equation. Monatchefte fur Mathematik 141, 237 (2004)

    Article  MathSciNet  Google Scholar 

  26. Oster, G., Hongyun, W., Grabe, M.: How Fo–ATPase generates rotary torque. Phil. Trans. R. Soc. Lond. B 355, 523 (2000)

    Article  Google Scholar 

  27. Risken, H.: The Fokker-Planck Equation: Methods of Solution and Applications. Springer, Berlin (1984)

    Book  Google Scholar 

  28. Crank, C., Nicolson, N.: A practical method for numerical evaluation of solutions of partial differential equations of the heat-conduction type. Proc. Camb. Philos. Soc. 43(50), 50 (1947)

    Article  ADS  MathSciNet  Google Scholar 

  29. Press, W.H., Teukolsky, S.A., Vettering, W.T., Flannery, B.P.: Numerical Recipes, The Art of Scientific Computing, p. 625. Cambridge University Press, New York (1987)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2021 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Fornés, J.A. (2021). The Fokker-Planck Equation. In: Principles of Brownian and Molecular Motors. Springer Series in Biophysics, vol 21. Springer, Cham. https://doi.org/10.1007/978-3-030-64957-9_2

Download citation

Publish with us

Policies and ethics