Skip to main content

Chapter 7 Tree Physiology and Intraspecific Responses to Extreme Events: Insights from the Most Extreme Heat Year in U.S. History

  • Chapter
  • First Online:
Photosynthesis, Respiration, and Climate Change

Part of the book series: Advances in Photosynthesis and Respiration ((AIPH,volume 48))

  • 1695 Accesses

Abstract

Extreme weather events, including heat waves and droughts, are increasing as a result of climate change, and these events are occurring within the context of gradual increases in global mean temperatures over decadal to century timescales. Trees are especially vulnerable to extreme events and their physiological responses to these conditions may dictate their ability to survive and persist under future climate change. Recent studies indicate that extreme weather events can directly or indirectly weaken trees to the point of mortality, and when compounded over space and time, this has the potential to alter ecosystem functioning and the global carbon cycle more broadly. Furthermore, extreme events can potentially impact the evolutionary trajectory of trees, with rapid selection favoring a subset of survivors with altered physiologies, assuming genetic variation is sufficient to allow for survival in the first place. Unfortunately, the impacts of extreme years on the physiological functioning of trees at the intraspecific level are not well understood, hindering our ability to predict long-term consequences of extreme events on the survival and evolutionary trajectories of tree species.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  • Aitken SN, Yeaman S, Holliday JA, Wang TL, Curtis-McLane S (2008) Adaptation, migration or extirpation: climate change outcomes for tree populations. Evol Appl 1:95–111

    Article  PubMed  PubMed Central  Google Scholar 

  • Akalusi ME, Bourque CP (2018) Effect of climatic variation on the morphological characteristics of 37-year-old balsam fir provenances planted in a common garden in New Brunswick, Canada. Ecol Evol 8:3208–3218

    Article  PubMed  PubMed Central  Google Scholar 

  • Alberto FJ, Aitken SN, Alia R, Gonzalez-Martinez SC, Hanninen H, Kremer A, Lefevre F, … O Savolainen (2013) Potential for evolutionary responses to climate change evidence from tree populations. Glob Chang Biol 19: 1645–1661

    Google Scholar 

  • Allen CD, Macalady AK, Chenchouni H, Bachelet D, McDowell N, Vennetier M, Kitzberger T … Cobb N (2010) A global overview of drought and heat-induced tree mortality reveals emerging climate change risks for forests. For Ecol Manag 259: 660–684

    Google Scholar 

  • Allen CD, Breshears DD, McDowell NG (2015) On underestimation of global vulnerability to tree mortality and forest die-off from hotter drought in the Anthropocene. Ecosphere 6:1–55

    Article  Google Scholar 

  • Anderegg WRL, Anderegg LDL, Sherman C, Karp DS (2012) Effects of widespread drought-induced aspen mortality on understory plants. Conserv Biol 26:1082–1090

    Article  PubMed  Google Scholar 

  • Anderegg WRL, Plavcova L, Anderegg LDL, Hacke UG, Berry JA, Field CB (2013) Drought’s legacy: multiyear hydraulic deterioration underlies widespread aspen forest die-off and portends increased future risk. Glob Chang Biol 19:1188–1196

    Article  PubMed  Google Scholar 

  • Anderegg WRL, Schwalm C, Biondi F, Camarero JJ, Koch G, Litvak M, Ogle K … Pacala S (2015) Pervasive drought legacies in forest ecosystems and their implications for carbon cycle models. Science 349: 528–532

    Google Scholar 

  • Anderson JT, Panetta AM, Mitchell-Olds T (2012) Evolutionary and ecological responses to anthropogenic climate change. Plant Physiol 160:1728–1740

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Arend M, Kuster T, Gunthardt-Goerg MS, Dobbertin M (2011) Provenance-specific growth responses to drought and air warming in three European oak species (Quercus robur, Q. petraea and Q. pubescens). Tree Physiol 31:287–297

    Article  PubMed  Google Scholar 

  • Bigras FJ (2000) Selection of white spruce families in the context of climate change: heat tolerance. Tree Physiol 20:1227–1234

    Article  CAS  PubMed  Google Scholar 

  • Bréda N, Badeau V (2008) Forest tree responses to extreme drought and some biotic events: towards a selection according to hazard tolerance? Compt Rendus Geosci 340:651–662

    Article  Google Scholar 

  • Bruggemann N, Gessler A, Kayler Z, Keel SG, Badeck F, Barthel M, Boeckx P … Bahn M (2011) Carbon allocation and carbon isotope fluxes in the plant-soil-atmosphere continuum: a review. Biogeosciences 8: 3457–3489

    Google Scholar 

  • Carter JM, Orive ME, Gerhart LM, Stern JH, Marchin RM, Nagel J, Ward JK (2017) Warmest extreme year in U.S. history alters thermal requirements for tree phenology. Oecologia 183:1197–1210

    Article  PubMed  Google Scholar 

  • Casper BB, Forseth IN, Wait DA (2005) Variation in carbon isotope discrimination in relation to plant performance in a natural population of Cryptantha flava. Oecologia 145:541–548

    Article  CAS  PubMed  Google Scholar 

  • Cerasoli S, Wertin T, McGuire MA, Rodrigues A, Aubrey DP, Pereira JS, Teskey RO (2014) Poplar saplings exposed to recurring temperature shifts of different amplitude exhibit differences in leaf gas exchange and growth despite equal mean temperature. AoB Plants 6:1–9

    Article  CAS  Google Scholar 

  • Chang H, Castro CL, Carillo CM (2015) The more extreme nature of U.S. warm season climate in the observational record and two “well-performing” dynamically downscaled CMIP3 models. J Geophys Res 120:8244–8263

    Article  Google Scholar 

  • Comstock JP, Ehleringer JR (1992) Correlating genetic-variation in carbon isotopic discrimination with complex climatic gradients. Proc Natl Acad Sci U S A 89:7747–7751

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Diffenbaugh NS, Field CB (2013) Changes in ecologically critical terrestrial climate conditions. Science 341:486–492

    Article  CAS  PubMed  Google Scholar 

  • Donat MG, Alexander LV, Yang H, Durre I, Vose R, Dunn RJH, Willett KM … Kitching S (2013) Updated analyses of temperature and precipitation extreme indices since the beginning of the twentieth century: the HadEX2 dataset. J Geophys Res Atmos 118: 2098–2118

    Google Scholar 

  • Drake JE, Tjoelker MG, Varhammar A, Medlyn BE, Reich PB, Leigh A, Pfautsch S … Barton CVM (2018) Trees tolerate an extreme heatwave via sustained transpirational cooling and increased leaf thermal tolerance. Glob Chang Biol 24: 2390–2402

    Google Scholar 

  • Ehleringer JR (1990) Correlations between carbon isotope discrimination and leaf conductance to water vapor in common beans. Plant Physiol 93:1422–1425

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ehleringer JR, Dawson TE (1992) Water uptake by plants: perspectives from stable isotope composition. Plant Cell Environ 15:1073–1082

    Article  CAS  Google Scholar 

  • Ehleringer JR (1993a) Carbon and water relations in desert plants: an isotopic perspective. In: Ehleringer JR et al (eds) Stable Isotopes and Plant-Carbon Water Relations. Academic, San Diego, pp 155–172

    Chapter  Google Scholar 

  • Ehleringer JR (1993b) Variation in leaf carbon-isotope discrimination in Encelia farinosa – implications for growth, competition, and drought survival. Oecologia 95:340–346

    Article  PubMed  Google Scholar 

  • Ehleringer JR, Monson RK (1993) Evolutionary and ecological aspects of photosynthetic pathway variation. Annu Rev Ecol Syst 24:411–439

    Article  Google Scholar 

  • Ehleringer JR, Cerling TE (1995) Atmospheric CO2 and the ratio of intercellular to ambient CO2 concentrations in plants. Tree Physiol 15:105–111

    Article  CAS  PubMed  Google Scholar 

  • Farquhar GD, Oleary MH, Berry JA (1982) On the relationship between carbon isotope discrimination and the inter-cellular carbon-dioxide concentration in leaves. Aust J Plant Physiol 9:121–137

    CAS  Google Scholar 

  • Farquhar GD, Ehleringer JR, Hubick KT (1989) Carbon isotope discrimination and photosynthesis. Annu Rev Plant Physiol Plant Mol Biol 40:503–537

    Article  CAS  Google Scholar 

  • Federal Register (2003) Emerald ash borer: Quarantine and regulations. 7 CFR Part 301 [Docket no. 02-125-1]

    Google Scholar 

  • Flanagan LB, Johnsen KH (1995) Genetic variation in carbon isotope discrimination and its relationship to growth under field conditions in full-sib families of Piceamariana. Can J For Res 25:39–47

    Article  Google Scholar 

  • Grossiord C, Sevanto S, Dawson TE, Adams HD, Collins AD, Dickman LT, Newman BD … McDowell NG (2017) Warming combined with more extreme precipitation regimes modifies the water sources used by trees. New Phytol 213: 584–596

    Google Scholar 

  • Gutschick VP, BassiriRad H (2003) Extreme events as shaping physiology, ecology, and evolution of plants: toward a unified definition and evaluation of their consequences. New Phytol 160:21–42

    Article  PubMed  Google Scholar 

  • Hacke UG, Stiller V, Sperry JS, Pitterman J, McCulloh KA (2001) Cavitation fatigue. Embolism and refilling cycles can weaken the cavitation resistance of xylem. Plant Physiol 125

    Google Scholar 

  • Hansen J, Sato M, Ruedy R (2012) Perception of climate change. Proc Natl Acad Sci U S A 109:E2415–E2423

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Heschel MS, Riginos C (2005) Mechanisms of selection for drought stress tolerance and avoidance in Impatiens capensis (Balsaminacea). Am J Bot 92:37–44

    Article  PubMed  Google Scholar 

  • Hozain MI, Salvucci ME, Fokar M, Holaday AS (2010) The differential response of photosynthesis to high temperature for a boreal and temperate Populus species relates to differences in Rubisco activation and Rubisco activase properties. Tree Physiol 30:32–44

    Article  CAS  PubMed  Google Scholar 

  • Hüve K, Bichele I, Ivanova H, Keerberg O, Pärnik T, Rasulov B, Mari T … Niinemets Ü (2012) Temperature responses of dark respiration in relation to leaf sugar concentration. Physiol Plant 144: 320–334

    Google Scholar 

  • IPCC (2012) Managing the risks of extreme events and disaster to advance climate change adaptation. A special report of working groups I and II of the Intergovernmental Panel on Climate Change. In: Field CB, et al. (eds), Cambridge University Press, Cambridge, UK, and New York, NY, USA, p 582

    Google Scholar 

  • IPCC (2013) Climate change 2013: the physical science basis. Contribution of working group I to the fifth assessment report of the Intergovernmental Panel on Climate Change. In: Stocker TF, et al. (eds), Cambridge, UK, New York, NY, USA, p 1535

    Google Scholar 

  • Iverson LR, Prasad AM, Matthews SN, Peters M (2008) Estimating potential habitat for 134 eastern US tree species under six climate scenarios. For Ecol Manag 254:390–406

    Article  Google Scholar 

  • Jansen K, Sohrt J, Kohnle U, Ensminger I, Gessler A (2012) Tree ring isotopic composition, radial increment and height growth reveal provenance-specific reactions of Douglas-fir towards environmental parameters. Trees 27:37–52

    Article  Google Scholar 

  • Junker LV, Kleiber A, Jansen K, Wildhagen H, Hess M, Kayler Z, Kammerer B … Ensminger I (2017) Variation in short-term and long-term responses of photosynthesis and isoprenoid-mediated photoprotection to soil water availability in four Douglas-fir provenances. Sci Rep 7: 40145

    Google Scholar 

  • Kawecki TJ, Ebert D (2004) Conceptual issues in local adaptation. Ecol Lett 7:1225–1241

    Article  Google Scholar 

  • Keel SG, Siegwolf RTW, Korner C (2006) Canopy CO2 enrichment permits tracing the fate of recently assimilated carbon in a mature deciduous forest. New Phytol 172:319–329

    Article  CAS  PubMed  Google Scholar 

  • Knight CA, Vogel H, Kroymann J, Shumate A, Witsenboer H, Mitchell-Olds T (2006) Expression profiling and local adaptation of Boechera holboellii populations for water use efficiency across a naturally occurring water stress gradient. Mol Ecol 15:1229–1237

    Article  CAS  PubMed  Google Scholar 

  • Kovacs KF, Haight RG, McCullough DG, Mercader RJ, Siegert NW, Liebhold AM (2010) Cost of potential emerald ash borer damage in US communities, 2009–2019. Ecol Econ 69:569–578

    Article  Google Scholar 

  • Loreto F, Velikova V (2001) Isoprene produced by leaves protects the photosynthetic apparatus against ozone damage, quenches ozone products, and reduces lipid peroxidation of cellular membranes. Plant Physiol 127:1781–1787

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • MacFarlane DW, Meyer SP (2005) Characteristics and distribution of potential ash tree hosts for emerald ash borer. For Ecol Manag 213:15–24

    Article  Google Scholar 

  • Marchin RM, Sage EL, Ward JK (2008) Population-level variation of Fraxinus americana (white ash) is influenced by precipitation differences across the native range. Tree Physiol 28:151–159

    Article  PubMed  Google Scholar 

  • McCullough DG, Poland TM, Cappaert D (2009) Attraction of the emerald ash borer to ash trees stressed by girdling, herbicide treatment, or wounding. Canan Journal of Forest Research-Revue Canadienne De Recherche Forestiere 39:1331–1345

    Article  CAS  Google Scholar 

  • Meehl GA, Tebaldi C (2004) More intense, more frequent, and longer lasting heat waves in the 21st century. Science 305:994–997

    Article  CAS  PubMed  Google Scholar 

  • Murray F (1967) On the computation of saturation vapor pressure. J Appl Metereol 6:203–204

    Article  CAS  Google Scholar 

  • Nicotra AB, Davidson A (2010) Adaptive phenotypic plasticity and plant water use. Funct Plant Biol 37:117–127

    Article  Google Scholar 

  • Park Williams A, Allen CD, Macalady AK, Griffin D, Woodhouse CA, Meko DM, Swetnam TW… McDowell NG (2013) Temperature as a potent driver of regional forest drought stress and tree mortality. Nat Clim Chang 3: 292–297

    Google Scholar 

  • Perkins SE, Alexander LV, Nairn JR (2012) Increasing frequency, intensity and duration of observed global heatwaves and warm spells. Geophys Res Lett 39:1–5

    Article  Google Scholar 

  • Poland TM, McCullough DG (2006) Emerald ash borer: invasion of the urban forest and the threat to North America’s ash resource. J For 104:118–124

    Google Scholar 

  • Sánchez-Salguero R, Camarero JJ, Rozas V, Génova M, Olano JM, Arzac A, Gazol A … Linares JC (2018) Resist, recover or both? Growth plasticity in response to drought is geographically structured and linked to intraspecific variability in Pinus pinaster. J Biogeogr 45: 1126–1139

    Google Scholar 

  • Sandquist DR, Ehleringer JR (2003) Carbon isotope discrimination differences within and between contrasting populations of Encelia farinosa raised under common-environment conditions. Oecologia 134:463–470

    Article  PubMed  Google Scholar 

  • Savolainen O, Pyhajarvi T, Knurr T (2007) Gene flow and local adaptation in trees. Annu Rev Ecol Evol Syst 38:595–619

    Article  Google Scholar 

  • Sharkey TD, Singsaas EL (1995) Why plants emit isoprene. Nature 374:769

    Article  CAS  Google Scholar 

  • Sharkey TD, Yeh S (2001) Isoprene emission from plants. Annu Rev Plant Physiol Plant Mol Biol 52:407–436

    Article  CAS  PubMed  Google Scholar 

  • Smith SJ, Edmonds J, Harlin CA, Mundra A, Calvin K (2015) Near-term acceleration in the rate of temperature change. Nat Clim Chang 5:333–336

    Article  Google Scholar 

  • Teskey R, Wertin T, Bauweraerts I, Ameye M, McGuire MA, Steppe K (2015) Responses of tree species to heat waves and extreme heat events. Plant Cell Environ 38:1699–1712

    Article  PubMed  Google Scholar 

  • Urban J, Ingwers M, McGuire MA, Teskey RO (2017a) Stomatal conductance increases with rising temperature. Plant Signal Behav 12:e1356534

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Urban J, Ingwers MW, McGuire MA, Teskey RO (2017b) Increase in leaf temperature opens stomata and decouples net photosynthesis from stomatal conductance in Pinus taeda and Populus deltoides x nigra. J Exp Bot 68:1757–1767

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Voltas J, Chambel MR, Prada MA, Ferrio JP (2008) Climate-related variability in carbon and oxygen stable isotopes among populations of Aleppo pine grown in common-garden tests. Trees 22:759–769

    Article  CAS  Google Scholar 

  • von Caemmerer S, Evans JR (2015) Temperature responses of mesophyll conductance differ greatly between species. Plant Cell Environ 38:629–637

    Article  CAS  Google Scholar 

  • Walsh J, Wuebbles D, Hayhoe K, Kossin J, Kunkel K, Stephens G, Thorne P … Somerville R (2014) Our Changing Climate. In: Melillo JM, et al. (eds) Climate Change Impacts in the United States: The Third National Climate Assessment, pp 19–67. United States Global Change Research Program

    Google Scholar 

  • Weaver SJ, Kumar A, Chen MY (2014) Recent increases in extreme temperature occurrence over land. Geophys Res Lett 41:4669–4675

    Article  Google Scholar 

  • Weston DJ, Bauerle WL (2007) Inhibition and acclimation of C3 photosynthesis to moderate heat: a perspective from thermally contrasting genotypes of Acer ruäum (red maple). Tree Physiol 27:1083–1092

    Article  CAS  PubMed  Google Scholar 

  • Will RE, Wilson SM, Zou CB, Hennessey TC (2013) Increased vapor pressure deficit due to higher temperature leads to greater transpiration and faster mortality during drought for tree seedlings common to the forest–grassland ecotone. New Phytol 200:366–374

    Article  PubMed  Google Scholar 

  • Wuebbles D, Meehl G, Hayhoe K, Karl TR, Kunkel K, Santer B, Wehner M … Sun L (2014) CMIP5 climate model analyses: climate extremes in the United States. Bull Am Meteorol Soc 95: 571–583

    Google Scholar 

  • Zavalloni C, Gielen B, De Boeck HJ, Lemmens C, Ceulemans R, Nijs I (2009) Greater impact of extreme drought on photosynthesis of grasslands exposed to a warmer climate in spite of acclimation. Physiol Plant 136:57–72

    Article  CAS  PubMed  Google Scholar 

  • Zuo Z, Weraduwage SM, Lantz AT, Sanchez LM, Weise SE, Wang J, Childs KL, Sharkey TD (2019) Expression of isoprene synthase in Arabidopsis alters plant growth and expression of key abiotic and biotic stress-related genes under unstressed conditions. Plant Physiol 180:124–152

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Joy K. Ward .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Carter, J.M., Burnette, T.E., Ward, J.K. (2021). Chapter 7 Tree Physiology and Intraspecific Responses to Extreme Events: Insights from the Most Extreme Heat Year in U.S. History. In: Becklin, K.M., Ward, J.K., Way, D.A. (eds) Photosynthesis, Respiration, and Climate Change . Advances in Photosynthesis and Respiration, vol 48. Springer, Cham. https://doi.org/10.1007/978-3-030-64926-5_7

Download citation

Publish with us

Policies and ethics