Abstract
Theoretical proposals have previously been put forward regarding the computational basis of interoception. Following on this, we recently reported using an active inference approach to 1) quantitatively simulate interoceptive computation, and 2) fit the model to behavior on a cardiac awareness task. In the present work, we attempted to replicate our previous results in an independent group of healthy participants. We provide evidence confirming our previous finding that healthy individuals adaptively adjust prior expectations and interoceptive sensory precision estimates based on task context. This offers further support for the utility of computational approaches to characterizing the dynamics of interoceptive processing.
Keywords
This is a preview of subscription content, log in via an institution.
Buying options
Tax calculation will be finalised at checkout
Purchases are for personal use only
Learn about institutional subscriptionsReferences
Barrett, L., Simmons, W.: Interoceptive predictions in the brain. Nat. Rev. Neurosci. 16, 419–429 (2015)
Smith, R., Thayer, J.F., Khalsa, S.S., Lane, R.D.: The hierarchical basis of neurovisceral integration. Neurosci. Biobehav. Rev. 75, 274–296 (2017)
Smith, R., Kuplicki, R., Feinstein, J., Forthman, K.L., Stewart, J.L., Paulus, M.P., et al.: A Bayesian computational model reveals a failure to adapt interoceptive precision estimates across depression, anxiety, eating, and substance use disorders. PLoS Comput. Biol. (2020, in press)
Pollatos, O., Herbert, B.M., Matthias, E., Schandry, R.: Heart rate response after emotional picture presentation is modulated by interoceptive awareness. Int. J. Psychophysiol. 63(1), 117–124 (2007)
Desmedt, O., Luminet, O., Corneille, O.: The heartbeat counting task largely involves non-interoceptive processes: evidence from both the original and an adapted counting task. Biol. Psychol. 138, 185–188 (2018)
DeVille, D.C., Kuplicki, R., Stewart, J.L., Tulsa, I., Aupperle, R.L., Bodurka, J., et al.: Diminished responses to bodily threat and blunted interoception in suicide attempters. Elife 9, e51593 (2020)
Khalsa, S.S., Lapidus, R.C.: Can interoception improve the pragmatic search for biomarkers in psychiatry? Front. Psychiatry 7, 121 (2016)
Khalsa, S.S., Rudrauf, D., Sandesara, C., Olshansky, B., Tranel, D.: Bolus isoproterenol infusions provide a reliable method for assessing interoceptive awareness. Int. J. Psychophysiol. 72(1), 34–45 (2009)
Hassanpour, M.S., Yan, L., Wang, D.J., Lapidus, R.C., Arevian, A.C., Simmons, W.K., et al.: How the heart speaks to the brain: neural activity during cardiorespiratory interoceptive stimulation. Philos. Trans. R. Soc. Lond. B Biol. Sci. 371(1708), 20160017 (2016)
Schandry, R., Bestler, M., Montoya, P.: On the relation between cardiodynamics and heartbeat perception. Psychophysiology 30(5), 467–474 (1993)
Allen, J., Murray, A.: Age-related changes in the characteristics of the photoplethysmographic pulse shape at various body sites. Physiol. Meas. 24(2), 297–307 (2003)
Ring, C., Brener, J.: The temporal locations of heartbeat sensations. Psychophysiology 29(5), 535–545 (1992)
Da Costa, L., Parr, T., Sajid, N., Veselic, S., Neacsu, V., Friston, K.: Active inference on discrete state-spaces – a synthesis. arXiv:2001.07203v2 (2020)
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2020 Springer Nature Switzerland AG
About this paper
Cite this paper
Smith, R., Kuplicki, R., Teed, A., Upshaw, V., Khalsa, S.S. (2020). Confirmatory Evidence that Healthy Individuals Can Adaptively Adjust Prior Expectations and Interoceptive Precision Estimates. In: Verbelen, T., Lanillos, P., Buckley, C.L., De Boom, C. (eds) Active Inference. IWAI 2020. Communications in Computer and Information Science, vol 1326. Springer, Cham. https://doi.org/10.1007/978-3-030-64919-7_16
Download citation
DOI: https://doi.org/10.1007/978-3-030-64919-7_16
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-030-64918-0
Online ISBN: 978-3-030-64919-7
eBook Packages: Computer ScienceComputer Science (R0)
