Skip to main content

Fatigue Reliability Assessment of Pipeline Weldments Subject to Minimal Detectable Flaws

  • Conference paper
  • First Online:
European Workshop on Structural Health Monitoring (EWSHM 2020)

Part of the book series: Lecture Notes in Civil Engineering ((LNCE,volume 128))

Included in the following conference series:

Abstract

The study presents a probabilistic modeling of the fatigue crack growth prediction of the pipeline steel weldments in nuclear power plants in the context of an integrated structural health monitoring setting. Fatigue testing of the crack growth in the fusion line region of the steel weldments is made using compact-tension specimens. In particular, the uncertainty of the crack growth due to different crack plane orientations is investigated in details. A total of six orientations of the specimens are manufactured and tested according to the ASTM standards to obtain the fatigue crack growth data. The Bayesian method is used to identify the probability density function of the parameters of the Paris’ fatigue crack growth model. Using the concept of damage tolerance, the reliability model of the pipeline weldments given the minimal detectable internal flaws of the ultrasonic nondestructive evaluations can be established. The time-dependent reliability of the pipeline weldments is obtained using the efficient first-order reliability method. Results indicate the uncertainty of the orientations of the flaws plays an important role in the overall reliability of the pipeline weldments.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 299.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 379.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 379.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Qiao, Q., Cheng, G., Li, Y., et al.: Corrosion failure analyses of an elbow and an elbow-to-pipe weld in a natural gas gathering pipeline. Eng. Fail. Anal. 82, 599–616 (2017)

    Article  Google Scholar 

  2. Shalaby, H.M.: Failure investigation of 321 stainless steel pipe to flange weld joint. Eng. Fail. Anal. 80, 290–298 (2017)

    Article  Google Scholar 

  3. Jaske, C.E.: Fatigue-strength-reduction factors for welds in pressure vessels and piping. J. Press. Vessel Technol. 122(3), 297–304 (2000)

    Google Scholar 

  4. Jia, X., An, J., Jing, J.: Transient characteristics of main feedwater line rupture accident for AP1000 nuclear power plant. Atomic Energy Sci. Technol. 50(8), 1422–1427 (2016)

    Google Scholar 

  5. Frangopol, D., Kim, S.: Prognosis and life-cycle assessment based on SHM information. In: Sensor Technologies for Civil Infrastructures, pp. 145–171. Elsevier (2014)

    Google Scholar 

  6. He, J., Guan, X., Peng, T., et al.: A multi-feature integration method for fatigue crack detection and crack length estimation in riveted lap joints using Lamb waves. Smart Mater. Struct. 22(10), 105007 (2013)

    Article  Google Scholar 

  7. Kulkarni, S., Achenbach, J.D.: Structural health monitoring and damage prognosis in fatigue. Struct. Health Monit. 7(1), 37–49 (2008)

    Article  Google Scholar 

  8. Friswell, M.I., Penny, J.E.: Crack modeling for structural health monitoring. Struct. health Monit. 1(2), 139–148 (2002)

    Article  Google Scholar 

  9. Vanniamparambil, P.A., Bartoli, I., Hazeli, K., et al.: An integrated structural health monitoring approach for crack growth monitoring. J. Intell. Mater. Syst. Struct. 23(14), 1563–1573 (2012)

    Article  Google Scholar 

  10. Ling, Y., Mahadevan, S.: Integration of structural health monitoring and fatigue damage prognosis. Mech. Syst. Sig. Process. 28, 89–104 (2012)

    Article  Google Scholar 

  11. Bang, D.J., Ince, A., Noban, M.: Modeling approach for a unified crack growth model in short and long fatigue crack regimes. Int. J. Fatigue 128, 105182 (2019)

    Article  Google Scholar 

  12. Wang, X.G., Ran, H.R., Jiang, C., et al.: An energy dissipation-based fatigue crack growth model. Int. J. Fatigue 114, 167–176 (2018)

    Article  Google Scholar 

  13. Xie, X., Jiang, W., Luo, Y., et al.: A model to predict the relaxation of weld residual stress by cyclic load: experimental and finite element modeling. Int. J. Fatigue 95, 293–301 (2017)

    Article  Google Scholar 

  14. Tang, L., Qian, C., Ince, A., et al.: Fatigue crack growth behavior of the MIG welded joint of 06Cr19Ni10 stainless steel. Materials 11(8), 1336 (2018)

    Article  Google Scholar 

  15. Tagawa, T., Tahara, K., Abe, E., et al.: Fatigue properties of cast aluminium joints by FSW and MIG welding. Weld. Int. 28(1), 21–29 (2014)

    Article  Google Scholar 

  16. Basak, S., Pal, T.K., Shome, M.: High-cycle fatigue behavior of MIG brazed galvanized DP600 steel sheet joint—Effect of process parameters. Int. J. Adv. Manuf. Technol. 82(5–8), 1197–1211 (2015)

    Google Scholar 

  17. Gaur, V., Enoki, M., Okada, T., et al.: A study on fatigue behavior of MIG-welded Al-Mg alloy with different filler-wire materials under mean stress. Int. J. Fatigue 107, 119–129 (2018)

    Article  Google Scholar 

  18. D’Angelo, L., Nussbaumer, A.: Estimation of fatigue S-N curves of welded joints using advanced probabilistic approach. Int. J. Fatigue 97, 98–113 (2017)

    Article  Google Scholar 

  19. Guan, X., Jha, R., Liu, Y.: Model selection, updating, and averaging for probabilistic fatigue damage prognosis. Struct. Saf. 33(3), 242–249 (2011)

    Article  Google Scholar 

  20. Yang, J., He, J., Guan, X., et al.: A probabilistic crack size quantification method using in-situ Lamb wave test and Bayesian updating. Mech. Syst. Sig. Process. 78, 118–133 (2016)

    Article  Google Scholar 

  21. He, J., Huo, H., Guan, X., et al.: A Lamb wave quantification model for inclined cracks with experimental validation. Chin. J. Aeronaut. (2020). https://doi.org/10.1016/j.cja.2020.02.010

    Article  Google Scholar 

  22. Du, Y.-M., Ma, Y.-H., Wei, Y.-F., et al.: Maximum entropy approach to reliability. Phys. Rev. E 101(1), 012106 (2020)

    Article  MathSciNet  Google Scholar 

  23. He, J., Chen, J., Guan, X.: Lifetime distribution selection for complete and censored multi-level testing data and its influence on probability of failure estimates. Struct. Multidiscip. Optimiz. 62(1), 1–17 (2020)

    Article  MathSciNet  Google Scholar 

  24. Triay, M., Meister, E., Lefever, B., et al.: RCC-M code: recent evolutions and perspectives. In: Pressure Vessels and Piping Conference. American Society of Mechanical Engineers (2019)

    Google Scholar 

  25. Paris, P., Erdogan, F.: A critical analysis of crack propagation laws (1963)

    Google Scholar 

  26. Maier, H.R., Lence, B.J., Tolson, B.A., et al.: First-order reliability method for estimating reliability, vulnerability, and resilience. Water Resour. Res. 37(3), 779–790 (2001)

    Article  Google Scholar 

  27. Xiang, Y., Liu, Y.: Application of inverse first-order reliability method for probabilistic fatigue life prediction. Probab. Eng. Mech. 26(2), 148–156 (2011)

    Article  Google Scholar 

  28. Mazzoleni, M., Barontini, S., Ranzi, R., et al.: Innovative probabilistic methodology for evaluating the reliability of discrete levee reaches owing to piping. J. Hydrol. Eng. 20(5), 04014067 (2015)

    Article  Google Scholar 

  29. U.S. Air Force, MIL-HDBK-1783B CHANGE 2: Engine Structural Integrity Program (ENSIP). Air Force Sustainment Center, Oklahoma City (2004)

    Google Scholar 

  30. Guan, X., Zhang, J., Zhou, S., et al.: Probabilistic modeling and sizing of embedded flaws in ultrasonic non-destructive inspections for fatigue damage prognostics and structural integrity assessment. NDT & E Int. 61, 1–9 (2014)

    Article  Google Scholar 

  31. Guan, X., He, J., Rasselkorde, E.M., et al.: Probabilistic fatigue life prediction and structural reliability evaluation of turbine rotors integrating an automated ultrasonic inspection system. J. Nondestr. Eval. 33(1), 51–61 (2014)

    Google Scholar 

Download references

Acknowledgement

The work in this study was supported by National Natural Science Foundation of China, Nos. 51975546, U1930403. The support is greatly acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xuefei Guan .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Duan, X., Wang, X., Guan, X. (2021). Fatigue Reliability Assessment of Pipeline Weldments Subject to Minimal Detectable Flaws. In: Rizzo, P., Milazzo, A. (eds) European Workshop on Structural Health Monitoring. EWSHM 2020. Lecture Notes in Civil Engineering, vol 128. Springer, Cham. https://doi.org/10.1007/978-3-030-64908-1_59

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-64908-1_59

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-64907-4

  • Online ISBN: 978-3-030-64908-1

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics