Skip to main content

Beneficial Effects of Plant-Derived Natural Products on Non-alcoholic Fatty Liver Disease

  • Chapter
  • First Online:
Pharmacological Properties of Plant-Derived Natural Products and Implications for Human Health

Abstract

Non-alcoholic fatty liver disease is becoming in one of the most prevalent liver diseases that leads to liver transplantation. This health problem is a multisystem disease with a complex pathogenesis that involves liver, adipose tissue, gut, and muscle. Although several pharmacological agents have been investigated to prevent or treat non-alcoholic fatty liver disease, currently there is no effective treatment for the management of this chronic liver disease. Nonetheless, the use of natural products has emerged as a alternative therapeutic for the treatment of hepatic diseases, including non-alcoholic fatty liver disease, due to its anti-inflammatory, antioxidant, antidiabetic, insulin-sensitizing, antiobesity, hypolipidemic, and hepatoprotective properties. In the present review, we have discussed the evidence from experimental and clinical studies regarding the potential beneficial effects of plant-derived natural products (quercetin, resveratrol, berberine, pomegranate, curcumin, cinnamon, green tea, coffee, garlic, ginger, ginseng, and gingko biloba) for the treatment or prevention of non-alcoholic fatty liver disease.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. European Association for the Study of the Liver (EASL), European Association for the Study of Diabetes (EASD), European Association for the Study of Obesity (EASO) (2016) EASL-EASD-EASO clinical practice guidelines for the management of non-alcoholic fatty liver disease. J Hepatol 64:1338–1402

    Google Scholar 

  2. Perumpail BJ, Khan MA, Yoo ER et al (2017) Clinical epidemiology and disease burden of nonalcoholic fatty liver disease. World J Gastroenterol 23(47):8263–8276

    PubMed  PubMed Central  Google Scholar 

  3. Younossi ZM, Koenig AB, Abdelatif D et al (2016) Global epidemiology of nonalcoholic fatty liver disease-Meta-analytic assessment of prevalence, incidence, and outcomes. Hepatology 64(1):73–84

    Google Scholar 

  4. Younossi ZM, Marchesini G, Pinto-Cortez H, Petta S (2019) Epidemiology of nonalcoholic fatty liver disease and nonalcoholic steatohepatitis: Implications for liver transplantation. Transplantation 103(1):22–27

    PubMed  Google Scholar 

  5. Bugianesi E, Rosso C, Cortez-Pinto H (2016) How to diagnose NAFLD in 2016. J Hepatol 65:643–644

    CAS  PubMed  Google Scholar 

  6. Chalasani N, Younossi Z, Lavine JE et al (2012) The diagnosis and management of non-alcoholic fatty liver disease: practice Guideline bye the American Association for the Study of Liver Diseases, American College of Gastroenterology, and the American Gastroenterological Association. Hepatology 55(6):2005–2023

    PubMed  Google Scholar 

  7. Carr RM, Oranu A, Khungar V (2016) Nonalcoholic fatty liver disease: pathophysiology and management. Gastroenterol Clin N Am 45(4):639–652

    Google Scholar 

  8. Byrne CD, Targher G (2015) NAFLD: a multisystem disease. J Hepatol 62(1):S47–S64

    Google Scholar 

  9. Haas JT, Francque S, Staels B (2016) Pathophysiology and mechanisms of nonalcoholic fatty liver disease. Annu Rev Physiol 78:181–205

    CAS  PubMed  Google Scholar 

  10. Kim NH, Lee MS (2018) Pathogenesis of nonalcoholic steatohepatitis and hormone-based therapeutic approaches. Front Endocrinol (Lausanne) 9:485

    Google Scholar 

  11. Zhang A, Sun H, Wang X (2013) Recent advances in natural products from plants for the treatment of liver diseases. Eur J Med Chem 63:570–577

    CAS  PubMed  Google Scholar 

  12. Latief U, Ahmad R (2017) Herbal remedies for liver fibrosis: a review on the mode of action of fifty herbs. J Tradit Complement Med 8(3):352–360

    PubMed  PubMed Central  Google Scholar 

  13. Pisonero-Vaquero S, González-Gallego J, Sánchez-Campos S, García-Mediavilla MV (2015) Flavonoids and related compounds in non-alcoholic fatty liver disease therapy. Curr Med Chem 22(25):2991–3012

    CAS  PubMed  Google Scholar 

  14. Rauf A, Imran M, Khan IA et al (2018) Anticancer potential of quercetin: a comprehensive review. Phytother Res 32(11):2109–2130

    CAS  PubMed  Google Scholar 

  15. Miltonprabu S, Tomczyk M, Skalicka-Woznial K et al (2017) Hepatoprotective effect of quercetin: from chemistry to medicine. Food Chem Toxicol 108(Pt B):365–374

    CAS  PubMed  Google Scholar 

  16. Zhang D, Xie L, Jia G et al (2011) Comparative study on antioxidant capacity of flavonoids and their inhibitory effects on oleic acid-induced hepatic steatosis in vitro. Eur J Med Chem 46(9):4548–4558

    CAS  PubMed  Google Scholar 

  17. Li X, Wang R, Zhou N et al (2013) Quercetin improves insulin resistance and hepatic lipid accumulation in vitro in a NAFLD cell model. Biomed Rep 1(1):71–76

    CAS  PubMed  Google Scholar 

  18. Vidyashankar S, Sandeep Varma R, Patki PS (2013) Quercetin ameliorate insulin resistance and up-regulates cellular antioxidants during oleic acid induced hepatic steatosis in HepG2 cells. Toxicol in Vitro 27(2):945–953

    CAS  PubMed  Google Scholar 

  19. Rojas A, Gallego P, Gil-Gómez A et al (2018) Natural extracts abolished lipid accumulation in cells harbouring non-favourable PNPLA3 genotype. Ann Hepatol 17(2):242–249

    CAS  PubMed  Google Scholar 

  20. Liu L, Gao C, Yao P, Gong Z (2015) Quercetin alleviates high-fat diet-induced oxidized low-density lipoprotein accumulation in the liver: implication for autophagy regulation. Biomed Res Int 2015:607531

    PubMed  PubMed Central  Google Scholar 

  21. Zhu X, Xiong T, Liu P et al (2018) Quercetin ameliorates HFD-induced NAFLD by promoting hepatic VLDL assembly and lipophagy via the IRE1a/XBP1s pathway. Food Chem Toxicol 114:52–60

    CAS  PubMed  Google Scholar 

  22. Porras D, Nistal E, Martínez-Flórez S et al (2017) Protective effect of quercetin on high-fat diet-induced non-alcoholic fatty liver disease in mice is mediated by modulating intestinal microbiota imbalance and related gut-liver axis activation. Free Radic Biol Med 102:188–202

    CAS  PubMed  Google Scholar 

  23. Yang H, Yang T, Heng C et al (2019) Quercetin improves nonalcoholic fatty liver by ameliorating inflammation, oxidative stress, and lipid metabolism in db/db mice. Phytother Res. https://doi.org/10.1002/ptr.6486

  24. Peng J, Li Q, Li K et al (2017) Quercetin improves glucose and lipid metabolism of diabetic rats: involvement of Akt signaling and SIRT1. J Diabetes Res 2017:3417306

    PubMed  PubMed Central  Google Scholar 

  25. Askari G, Ghiasvand R, Feizi A et al (2012) The effect of quercetin supplementation on selected markers of inflammation and oxidative stress. J Res Med Sci 17(7):637–641

    PubMed  PubMed Central  Google Scholar 

  26. Gambini J, Inglés M, Olaso G et al (2015) Properties of resveratrol: in vitro and in vivo studies about metabolism, bioavailability, and biological effects in animal models and humans. Oxidative Med Cell Longev 2015:837042

    CAS  Google Scholar 

  27. Berman AY, Motechin RA, Wiesenfeld MY, Holz MK (2017) The therapeutic potential of resveratrol: a review of clinical trials. NPJ Precis Oncol 1:pii: 35

    Google Scholar 

  28. Perumpail BJ, Li AA, Iqbal U et al (2018) Potential therapeutic benefits of herbs and supplements in patients with NAFLD. Diseases 6(3):pii: E80

    Google Scholar 

  29. Charytoniuk T, Drygalski K, Konstantynowicz-Nowicka K et al (2017) Alternative treatment methods attenuate the development of NAFLD: a review of resveratrol molecular mechanisms and clinical trials. Nutrition 34:108–117

    CAS  PubMed  Google Scholar 

  30. Rafiei H, Omidian K, Bandy B (2017) Comparison of dietary polyphenols for protection against molecular mechanisms underlying nonalcoholic fatty liver disease in a cell model of steatosis. Mol Nutr Food Res 61(9)

    Google Scholar 

  31. Huang Y, Lang H, Chen K et al (2019) Resveratrol protects against nonalcoholic fatty liver disease by improving lipid metabolism and redox homeostasis via the PPARα pathway. Appl Physiol Nutr Metab. https://doi.org/10.1139/apnm-2019-0057

  32. Ding S, Jiang J, Zhang G et al (2017) Resveratrol and caloric restriction prevent hepatic steatosis by regulating SIRT1-autophagy pathway and alleviating endoplasmic reticulum stress in high-fat diet-fed rats. PLoS One 12(8):e0183541

    PubMed  Google Scholar 

  33. Chen S, Zhao X, Ran L et al (2015) Resveratrol improves insulin resistance, glucose and lipid metabolism in patients with non-alcoholic fatty liver disease: a randomized controlled trial. Dig Liver Dis 47(3):226–232

    CAS  PubMed  Google Scholar 

  34. Faghihzadeh F, Adibi P, Hekmatdoost A (2015) The effects of resveratrol supplementation on cardiovascular risk factors in patients with non-alcoholic fatty liver disease: a randomised, double-blind, placebo-controlled study. Br J Nutr 114(5):796–803

    CAS  PubMed  Google Scholar 

  35. Heeboll S, Kreuzfeldt M, Hamilton-Dutoit S et al (2016) Placebo-controlled, randomised clinical trial: high-dose resveratrol treatment for non-alcoholic fatty liver disease. Scand J Gastroenterol 51(4):456–564

    PubMed  Google Scholar 

  36. Asghari S, Asghari-Jafarabadi M, Somi MH et al (2018) Comparison of calorie-restricted diet and resveratrol supplementation on anthropometric indices, metabolic parameters, and serum sirtuin-1 levels in patients with nonalcoholic fatty liver disease: a randomized controlled clinical trial. J Am Coll Nutr 37(3):223–233

    CAS  PubMed  Google Scholar 

  37. Chachay VS, Macdonald GA, Martin JH et al (2014) Resveratrol does not benefit patients with nonalcoholic fatty liver disease. Clin Gastroenterol Hepatol 12(12):2092–2103

    CAS  PubMed  Google Scholar 

  38. Poulsen MK, Nellemann B, Bibby BM et al (2018) No effect of resveratrol on VLDL-TG kinetics and insulin sensitivity in obese men with nonalcoholic fatty liver disease. Diabetes Obes Metab 20(10):2504–2509

    CAS  PubMed  Google Scholar 

  39. Kantartzis K, Fritsche L, Bombrich M et al (2018) Effects of resveratrol supplementation on liver fat content in overweight and insulin-resistant subjects: a randomized, double-blind, placebo-controlled clinical trial. Diabetes Obes Metab 20(7):1793–1797

    CAS  PubMed  Google Scholar 

  40. Elgebaly A, Radwan IA, AboElnas MM et al (2017) Resveratrol supplementation in patients with non-alcoholic fatty liver disease: systematic review and meta-analysis. J Gastrointestin Liver Dis 26(1):59–67

    PubMed  Google Scholar 

  41. Zhang C, Yuan W, Fang J et al (2016) Efficacy of resveratrol supplementation against non-alcoholic fatty liver disease: a meta-analysis of placebo-controlled clinical trials. PLoS One 11(8):e0161792

    PubMed  Google Scholar 

  42. Birdsall TC (1997) Berberine: therapeutic potential of an alkaloid found in several medicinal plants. Altern Med Rev 2:94–103

    Google Scholar 

  43. Vuddanda PR, Chakraborty S, Singh S (2010) Berberine: a potential phytochemical with multispectrum therapeutic activities. Expert Opin Investig Drugs 19:1297–1307

    CAS  PubMed  Google Scholar 

  44. Zhao L, Cang Z, Sun H, Nie X, Wang N, Lu Y (2017) Berberine improves glucogenesis and lipid metabolism in nonalcoholic fatty liver disease. BMC Endocr Disord 17:13

    PubMed  Google Scholar 

  45. Guo T, Woo SL, Guo X et al (2016) Berberine ameliorates hepatic steatosis and suppresses liver and adipose tissue inflammation in mice with diet-induced obesity. Sci Rep 6:22612

    CAS  PubMed  Google Scholar 

  46. Chang XX, Yan HM, Fei J, Jiang MH, Zhu HG, Lu DR, Gao X (2010) Berberine reduces methylation of the MTTP promoter and alleviates fatty liver induced by a high-fat diet in rats. J Lipid Res 51:2504–2515

    CAS  PubMed  Google Scholar 

  47. Li D, Zheng J, Hu Y, Hou H, Hao S, Liu N, Wang Y (2017) Amelioration of intestinal barrier dysfunction by berberine in the treatment of nonalcoholic fatty liver disease in rats. Pharmacogn Mag 13:677

    CAS  PubMed  Google Scholar 

  48. Pei ZY, Jun DY, Rui TK et al (2019) Berberine ameliorates high-fat diet-induced non-alcoholic fatty liver disease in rats via activation of SIRT3/AMPK/ACC Pathway. Curr Med Sci 39:37–43

    Google Scholar 

  49. Xu X, Zhu XP, Bai JY et al (2019) Berberine alleviates nonalcoholic fatty liver induced by a high-fat diet in mice by activating SIRT3. FASEB J 33:7289–7300

    CAS  PubMed  Google Scholar 

  50. Deng Y, Tang K, Chen R et al (2019) Berberine attenuates hepatic oxidative stress in rats with non-alcoholic fatty liver disease via the Nrf2/ARE signalling pathway. Exp Ther Med 17:2091–2098

    CAS  PubMed  Google Scholar 

  51. Zhu X, Bian H, Gao X (2016) The potential mechanisms of berberine in the treatment of nonalcoholic fatty liver disease. Molecules 21:1–12

    CAS  Google Scholar 

  52. Cicero AFG, Baggioni A (2016) Berberine and its role in chronic disease. In: Advances in experimental medicine and biology, pp 27–45

    Google Scholar 

  53. Yan HM, Xia MF, Wang Y et al (2015) Efficacy of berberine in patients with non-alcoholic fatty liver disease. PLoS One 10:1–16

    Google Scholar 

  54. Wei X, Wang C, Hao S, Song H, Yang L (2016) The therapeutic effect of berberine in the treatment of nonalcoholic fatty liver disease: a meta-analysis. Evid Based Complement Alternat Med 2016:1–9

    CAS  Google Scholar 

  55. Ok E, Do G-M, Lim Y, Park J-E, Park Y-J, Kwon O (2013) Pomegranate vinegar attenuates adiposity in obese rats through coordinated control of AMPK signaling in the liver and adipose tissue. Lipids Health Dis 12:163

    PubMed  Google Scholar 

  56. Grattagliano I, Portincasa P, Palmieri VO, Palasciano G (2007) Managing nonalcoholic fatty liver disease: recommendations for family physicians. Can Fam Physician 53:857–863

    PubMed  Google Scholar 

  57. Al-Muammar MN, Khan F (2012) Obesity: the preventive role of the pomegranate (Punica granatum). Nutrition 28:595–604

    CAS  PubMed  Google Scholar 

  58. Shaban NZ, El-Kersh MAL, El-Rashidy FH, Habashy NH (2013) Protective role of Punica granatum (pomegranate) peel and seed oil extracts on diethylnitrosamine and phenobarbital-induced hepatic injury in male rats. Food Chem 141:1587–1596

    CAS  PubMed  Google Scholar 

  59. Khajebishak Y, Payahoo L, Alivand M, Alipour B (2019) Punicic acid: a potential compound of pomegranate seed oil in Type 2 diabetes mellitus management. J Cell Physiol 234:2112–2120

    CAS  PubMed  Google Scholar 

  60. Xu KZY, Zhu C, Kim MS, Yamahara J, Li Y (2009) Pomegranate flower ameliorates fatty liver in an animal model of type 2 diabetes and obesity. J Ethnopharmacol 123:280–287

    PubMed  Google Scholar 

  61. Al-Shaaibi SNK, Waly MI, Al-Subhi L, Tageldin MH, Al-Balushi NM, Rahman MS (2016) Ameliorative effects of pomegranate peel extract against dietary-induced nonalcoholic fatty liver in rats. Prev Nutr Food Sci 21:14–23

    PubMed  Google Scholar 

  62. Białek A, Stawarska A, Bodecka J, Białek M, Tokarz A (2017) Pomegranate seed oil influences the fatty acids profile and reduces the activity of desaturases in livers of Sprague-Dawley rats. Prostaglandins Other Lipid Mediat 131:9–16

    PubMed  Google Scholar 

  63. Hassan N, Soliman G, Okasha E, Shalaby A (2018) Histological, immunohistochemical, and biochemical study of experimentally induced fatty liver in adult male albino rat and the possible protective role of pomegranate. J Microsc Ultrastruct 6:44

    PubMed  Google Scholar 

  64. Fischer UA, Carle R, Kammerer DR (2011) Identification and quantification of phenolic compounds from pomegranate (Punica granatum L.) peel, mesocarp, aril and differently produced juices by HPLC-DAD-ESI/MS(n). Food Chem 127:807–821

    CAS  PubMed  Google Scholar 

  65. Jurenka J (2008) Therapeutic applications of pomegranate (Punica granatum L.): a review. Altern Med Rev 13:128–144

    PubMed  Google Scholar 

  66. Hou C, Zhang W, Li J, Du L, Lv O, Zhao S, Li J (2019) Beneficial effects of pomegranate on lipid metabolism in metabolic disorders. Mol Nutr Food Res 63:1800773

    Google Scholar 

  67. Yan D, Wei YY, Li XM, Sun XC, Wang Z, Aisa HA (2017) PFP alleviates nonalcoholic steatohepatitis fatty liver in both Apo E−/− mice and Changliver cell[S]. Am J Transl Res 9:3073–3083

    CAS  PubMed  Google Scholar 

  68. Abidov M, Ramazanov Z, Seifulla R, Grachev S (2010) The effects of Xanthigen™ In the weight management of obese premenopausal women with non-alcoholic fatty liver disease and normal liver fat. Diabetes Obes Metab 12:72–81

    CAS  PubMed  Google Scholar 

  69. Ekhlasi G, Shidfar F, Agah S, Merat S, Hosseini AF (2015) Effects of pomegranate and orange juice on antioxidant status in non-alcoholic fatty liver disease patients: a randomized clinical trial. Int J Vitam Nutr Res 85:292–298

    CAS  PubMed  Google Scholar 

  70. Priyadarsini KI (2014) The chemistry of curcumin: from extraction to therapeutic agent. Molecules 19:20091–20112

    PubMed  PubMed Central  Google Scholar 

  71. Esatbeyoglu T, Huebbe P, Ernst IMA, Chin D, Wagner AE, Rimbach G (2012) Curcumin-from molecule to biological function. Angew Chem Int Ed 51:5308–5332

    CAS  Google Scholar 

  72. Grynkiewicz G, Ślifirski P (2012) Curcumin and curcuminoids in quest for medicinal status. Acta Biochim Pol 59:201–212

    CAS  PubMed  Google Scholar 

  73. Aggarwal BB, Kumar A, Bharti AC (2003) Anticancer potential of curcumin: preclinical and clinical studies. Anticancer Res 23:363–398

    CAS  PubMed  Google Scholar 

  74. Bao W, Li K, Rong S et al (2010) Curcumin alleviates ethanol-induced hepatocytes oxidative damage involving heme oxygenase-1 induction. J Ethnopharmacol 128:549–553

    CAS  PubMed  Google Scholar 

  75. Stellavato A, Pirozzi AVA, De Novellis F et al (2018) In vitro assessment of nutraceutical compounds and novel nutraceutical formulations in a liver-steatosis-based model. Lipids Health Dis 17:1–11

    Google Scholar 

  76. Vizzutti F, Provenzano A, Galastri S et al (2010) Curcumin limits the fibrogenic evolution of experimental steatohepatitis. Lab Investig 90:104–115

    CAS  PubMed  Google Scholar 

  77. Inzaugarat ME, De Matteo E, Baz P et al (2017) New evidence for the therapeutic potential of curcumin to treat nonalcoholic fatty liver disease in humans. PLoS One 12:1–15

    Google Scholar 

  78. Afrin R, Arumugam S, Rahman A et al (2017) Curcumin ameliorates liver damage and progression of NASH in NASH-HCC mouse model possibly by modulating HMGB1-NF-κB translocation. Int Immunopharmacol 44:174–182

    CAS  PubMed  Google Scholar 

  79. Saadati S, Sadeghi A, Mansour A et al (2019) Curcumin and inflammation in non-alcoholic fatty liver disease: a randomized, placebo controlled clinical trial. BMC Gastroenterol 19:1–6

    CAS  Google Scholar 

  80. Panahi Y, Kianpour P, Mohtashami R, Jafari R, Simental-Mendía LE, Sahebkar A (2016) Curcumin lowers serum lipids and uric acid in subjects with nonalcoholic fatty liver disease: a randomized controlled trial. J Cardiovasc Pharmacol 68(3):223–229

    CAS  PubMed  Google Scholar 

  81. Panahi Y, Kianpour P, Mohtashami R, Jafari R, Simental-Mendía LE, Sahebkar A (2017) Efficacy and safety of phytosomal curcumin in non-alcoholic fatty liver disease: a randomized controlled trial. Drug Res (Stuttg) 67(4):244–251

    CAS  Google Scholar 

  82. Saadati S, Hekmatdoost A, Hatami B, Mansour A, Yari Z, Hedayati M, Sadeghi A (2018) Comparing different non-invasive methods in assessment of the effects of curcumin on hepatic fibrosis in patients with non-alcoholic fatty liver disease. Gastroenterol Hepatol from Bed to Bench 11:S8–S13

    Google Scholar 

  83. White CM, Lee JY (2019) The impact of turmeric or its curcumin extract on nonalcoholic fatty liver disease: a systematic review of clinical trials. Pharm Pract (Granada) 17:1–5

    Google Scholar 

  84. Wei Z, Liu N, Tantai X, Xing X, Xiao C, Chen L, Wang J (2019) The effects of curcumin on the metabolic parameters of non-alcoholic fatty liver disease: a meta-analysis of randomized controlled trials. Hepatol Int 13:302–313

    PubMed  Google Scholar 

  85. Mansour-Ghanaei F, Pourmasoumi M, Hadi A, Joukar F (2019) Efficacy of curcumin/turmeric on liver enzymes in patients with non-alcoholic fatty liver disease: a systematic review of randomized controlled trials. Integr Med Res 8:57–61

    PubMed  Google Scholar 

  86. Ranasinghe P, Pigera S, Premakumara GS, Galappaththy P, Constantine GR, Katulanda P (2013) Medicinal properties of ‘true’ cinnamon (Cinnamomum zeylanicum): a systematic review. BMC Complement Altern Med 13(1):275

    PubMed  PubMed Central  Google Scholar 

  87. Jayaprakasha GK, Rao LJM (2011) Chemistry, biogenesis, and biological activities of Cinnamomum zeylanicum. Crit Rev Food Sci Nutr 51(6):547–562

    CAS  PubMed  Google Scholar 

  88. Lopes BP, Gaique TG, Souza LL, Paula GS, Kluck GE, Atella GC, Gomez ACC, Simas NK, Kuster RM, Ortiga-Carvalho TM, Pazos-Moura CC, Pazos-Moura CC (2015) Cinnamon extract improves the body composition and attenuates lipogenic processes in the liver and adipose tissue of rats. Food Funct 6(10):3257–3265

    CAS  PubMed  Google Scholar 

  89. Kaur N, Chugh H, Tomar V, Sakharkar MK, Dass SK, Chandra R (2019) Cinnamon attenuates adiposity and affects the expression of metabolic genes in diet-induced obesity model of zebrafish. Artif Cell Nanomed B 47(1):2930–2939

    Google Scholar 

  90. Askari F, Rashidkhani B, Hekmatdoost A (2014) Cinnamon may have therapeutic benefits on lipid profile, liver enzymes, insulin resistance, and high-sensitivity C-reactive protein in nonalcoholic fatty liver disease patients. Nutr Res 34(2):143–148

    CAS  PubMed  Google Scholar 

  91. Wang Y, Ho CT (2009) Polyphenolic chemistry of tea and coffee: a century of progress. J Agric Food Chem 57(18):8109–8114

    CAS  PubMed  Google Scholar 

  92. Balentine DA, Wiseman SA, Bouwens LC (1997) The chemistry of tea flavonoids. Crit Rev Food Sci Nutr 37(8):693–704

    CAS  PubMed  Google Scholar 

  93. Miyoshi N, Pervin M, Suzuki T, Unno K, Isemura M, Nakamura Y (2015) Green tea catechins for well-being and therapy: prospects and opportunities. Bot Targets Ther 5:85–96

    Google Scholar 

  94. Bae UJ, Park J, Park IW, Chae BM, Oh MR, Jung SJ, Ryu GS, Chae SW, Park BH (2018) Epigallocatechin-3-gallate-rich green tea extract ameliorates fatty liver and weight gain in mice fed a high fat diet by activating the sirtuin 1 and AMP Activating Protein Kinase Pathway. Am J Chin Med 46(03):617–632

    CAS  PubMed  Google Scholar 

  95. Huang J, Feng S, Liu A, Dai Z, Wang H, Reuhl K, Lu W, Yang CS (2018) Green tea polyphenol EGCG alleviates metabolic abnormality and fatty liver by decreasing bile acid and lipid absorption in mice. Mol Nutr Food Res 62(4). https://doi.org/10.1002/mnfr.201700696

  96. Pezeshki A, Safi S, Feizi A, Askari G, Karami F (2016) The effect of green tea extract supplementation on liver enzymes in patients with nonalcoholic fatty liver disease. Int J Prev Med 7:28

    PubMed  PubMed Central  Google Scholar 

  97. Hussain M, Habib-Ur-Rehman LA (2017) Therapeutic benefits of green tea extract on various parameters in non-alcoholic fatty liver disease patients. PaK J Med Sci 33(4):931

    PubMed  PubMed Central  Google Scholar 

  98. Butt MS, Sultan MT (2011) Coffee and its consumption: benefits and risks. Crit Rev Food Sci Nutr 51(4):363–373

    CAS  PubMed  Google Scholar 

  99. George SE, Ramalakshmi K, Mohan Rao LJ (2008) A perception on health benefits of coffee. Crit Rev Food Sci Nutr 48(5):464–486

    CAS  PubMed  Google Scholar 

  100. Higdon JV, Frei B (2006) Coffee and health: a review of recent human research. Crit Rev Food Sci Nutr 46(2):101–123

    CAS  PubMed  Google Scholar 

  101. Qi H, Li S (2014) Dose–response meta-analysis on coffee, tea and caffeine consumption with risk of P arkinson’s disease. Geriatr Gegerontol Int 14(2):430–439

    Google Scholar 

  102. Chen S, Teoh NC, Chitturi S, Farrell GC (2014) Coffee and non-alcoholic fatty liver disease: brewing evidence for hepatoprotection? J Gastroenterol Hepatol 29(3):435–441

    PubMed  Google Scholar 

  103. Amer MG, Mazen NF, Mohamed AM (2017) Caffeine intake decreases oxidative stress and inflammatory biomarkers in experimental liver diseases induced by thioacetamide: biochemical and histological study. Int J Immunopathol Pharmacol 30(1):13–24

    CAS  PubMed  PubMed Central  Google Scholar 

  104. Vitaglione P, Mazzone G, Lembo V, D’Argenio G, Rossi A, Guido M, Savoia M, Salomone F, Mennella I, De Filippis F, Ercolini D, Caporaso N, Ercolini D (2019) Coffee prevents fatty liver disease induced by a high-fat diet by modulating pathways of the gut–liver axis. J Nutr Sci 8:e15

    CAS  PubMed  PubMed Central  Google Scholar 

  105. Vitaglione P, Morisco F, Mazzone G, Amoruso DC, Ribecco MT, Romano A, Fogliano V, Caporaso N, D'Argenio G (2010) Coffee reduces liver damage in a rat model of steatohepatitis: the underlying mechanisms and the role of polyphenols and melanoidins. Hepatology 52(5):1652–1661

    CAS  PubMed  Google Scholar 

  106. Chen YP, Lu FB, Hu YB, Xu LM, Zheng MH, Hu ED (2018) A systematic review and a dose–response meta-analysis of coffee dose and nonalcoholic fatty liver disease. Clin Nutr S0261-5614(18):32563–32569

    Google Scholar 

  107. Wijarnpreecha K, Thongprayoon C, Ungprasert P (2017) Coffee consumption and risk of nonalcoholic fatty liver disease: a systematic review and meta-analysis. Eur J Gastroenterol Hepatol 29(2):e8–e12

    CAS  PubMed  Google Scholar 

  108. Xiao J, Fai So K, Liong EC, Tipoe GL (2013) Recent advances in the herbal treatment of non-alcoholic fatty liver disease. J Tradit Complement Med 3(2):88–94

    PubMed  PubMed Central  Google Scholar 

  109. Liu C, Liao JZ, Li PY (2017) Traditional Chinese herbal extracts inducing autophagy as a novel approach in therapy of nonalcoholic fatty liver disease. World J Gastroenterol 23(11):1964–1973

    CAS  PubMed  PubMed Central  Google Scholar 

  110. Block E, Dethier B, Bechand B, Cotelesage JJH, George GN, Goto K, Pickering IJ, Mendoza Rengifo E, Sheridan R, Sneeden EY, Vogt L (2018) Ajothiolanes: 3,4-dimethylthiolane natural products from garlic ( Allium sativum). J Agric Food Chem 66(39):10193–10204

    CAS  PubMed  Google Scholar 

  111. Lai YS, Chen WC, Ho CT, Lu KH, Lin SH, Tseng HC, Lin SY, Sheen LY (2014) Garlic essential oil protects against obesity-triggered nonalcoholic fatty liver disease through modulation of lipid metabolism and oxidative stress. J Agric Food Chem 62(25):5897–5906

    CAS  PubMed  Google Scholar 

  112. Hwang YP, Kim HG, Choi JH, Do MT, Chung YC, Jeong TC, Jeong HG (2013) S-allyl cysteine attenuates free fatty acid-induced lipogenesis in human hepg2 cells through activation of the amp-activated protein kinase-dependent pathway. J Nutr Biochem 24:1469–1478

    CAS  PubMed  Google Scholar 

  113. Liu C, Liao JZ, Li PY (2017) Traditional Chinese herbal extracts inducing autophagy as a novel approach in therapy of nonalcoholic fatty liver disease. World J Gastroenterol 23(11):1964–1973

    CAS  PubMed  PubMed Central  Google Scholar 

  114. Xiao J, Ching YP, Liong EC, Nanji AA, Fung ML, Tipoe GL (2013) Garlic-derived S-allylmercaptocysteine is a hepato-protective agent in non-alcoholic fatty liver disease in vivo animal model. Eur J Nutr 52(1):179–191

    CAS  PubMed  Google Scholar 

  115. Xiao J, Guo R, Fung ML, Liong EC, Chang RC, Ching YP, Tipoe GL (2013) Garlic-derived S-allylmercaptocysteine ameliorates nonalcoholic fatty liver disease in a rat model through inhibition of apoptosis and enhancing autophagy. Evid Based Complement Alternat Med 2013:642920

    PubMed  Google Scholar 

  116. Shin JH, Lee CW, Oh SJ, Yun J, Kang MR, Han SB, Park H, Jung JC, Chung YH, Kang JS (2014) Hepatoprotective effect of aged black garlic extract in rodents. Toxicol Res 30(1):49–54

    PubMed  Google Scholar 

  117. Maeda T, Miki S, Morihara N, Kagawa Y (2019) Aged garlic extract ameliorates fatty liver and insulin resistance and improves the gut microbiota profile in a mouse model of insulin resistance. Exp Ther Med 18(1):857–866

    CAS  PubMed  PubMed Central  Google Scholar 

  118. Zhang S, Gu Y, Wang L, Zhang Q, Liu L, Min Lu M, Meng G, Yao Z, Wu H, Xia Y, Bao X, Wang H, Shi H, Sun S, Wang X, Zhou M, Jia Q, Song K, Xiang H, Niu K (2019) Association between dietary raw garlic intake and newly diagnosed nonalcoholic fatty liver disease: a population-based study. Eur J Endocrinol pii: EJE-19-0179.R2

    Google Scholar 

  119. Kim HN, Kang SG, Roh YK, Choi MK, Song SW (2017) Efficacy and safety of fermented garlic extract on hepatic function in adults with elevated serum gamma-glutamyl transpeptidase levels: a double-blind, randomized, placebo-controlled trial. Eur J Nutr 56(5):1993–2002

    CAS  PubMed  Google Scholar 

  120. Soleimani D, Paknahad Z, Askari G, Iraj B, Feizi A (2016) Effect of garlic powder consumption on body composition in patients with nonalcoholic fatty liver disease: a randomized, double-blind, placebo-controlled trial. Adv Biomed Res 5:2

    PubMed  PubMed Central  Google Scholar 

  121. Lai YS, Lee WC, Lin YE, Ho CT, Lu KH, Lin SH, Panyod S, Chu YL, Sheen LY (2016) Ginger essential oil ameliorates hepatic injury and lipid accumulation in high fat diet-induced nonalcoholic fatty liver disease. J Agric Food Chem 64(10):2062–2071

    CAS  PubMed  Google Scholar 

  122. Sahebkar A (2011) Potential efficacy of ginger as a natural supplement for nonalcoholic fatty liver disease. World J Gastroenterol 17(2):271–272

    PubMed  PubMed Central  Google Scholar 

  123. Li J, Wang S, Yao L, Ma P, Chen Z, Han TL, Yuan C, Zhang J, Jiang L, Liu L, Ke D, Li C, Yamahara J, Li Y, Wang J (2019) 6-gingerol ameliorates age-related hepatic steatosis: association with regulating lipogenesis, fatty acid oxidation, oxidative stress and mitochondrial dysfunction. Toxicol Appl Pharmacol 362:125–135

    CAS  PubMed  Google Scholar 

  124. Rahimlou M, Yari Z, Hekmatdoost A, Alavian SM, Keshavarz SA (2016) Ginger supplementation in nonalcoholic fatty liver disease: a randomized, double-blind, placebo-controlled pilot study. Hepat Mon 16(1):e34897

    PubMed  PubMed Central  Google Scholar 

  125. Kiefer D, Pantuso T (2003) Panax ginseng. Am Fam Physician 68(8):1539–1542

    PubMed  Google Scholar 

  126. Lee SB, Cho HI, Jin YW, Lee EK, Ahn JY, Lee SM (2016) Wild ginseng cambial meristematic cells ameliorate hepatic steatosis and mitochondrial dysfunction in high-fat diet-fed mice. J Pharm Pharmacol 68(1):119–127

    CAS  PubMed  Google Scholar 

  127. Shukla R, Kumar M (2009) Role of Panax ginseng as an antioxidant after cadmium-induced hepatic injuries. Food Chem Toxicol 47:769–773

    CAS  PubMed  Google Scholar 

  128. Lin CF, Wong KL, Wu RS, Huang TC (2003) Protection by hot water extract of Panax noto ginseng on chronic ethanol-induced hepatotoxicity. Phytother Res 17(9):1119–1122

    PubMed  Google Scholar 

  129. Mollah ML, Kim GS, Moon HK, Chung SK, Cheon YP, Kim JK, Kim KS (2009) Antiobesity effects of wild ginseng (Panax ginseng C.A. Meyer) mediated by PPAR-gamma, GLUT4 and LPL in ob/ob mice. Phytother Res 23:220–225

    PubMed  Google Scholar 

  130. Miranda-Henriques MS, Diniz Mde F, Araújo MS (2014) Ginseng, green tea or fibrate: valid options for nonalcoholic steatohepatitis prevention? Arq Gastroenterol 51(3):255–260

    PubMed  Google Scholar 

  131. Xu Y, Yang C, Zhang S, Li J, Xiao Q, Huang W (2018) Ginsenoside Rg1 protects against non-alcoholic fatty liver disease by ameliorating lipid peroxidation, endoplasmic reticulum stress, and inflammasome activation. Biol Pharm Bull 41(11):1638–1644

    CAS  PubMed  Google Scholar 

  132. Kim SJ, Yuan HD, Chung SH (2010) Ginsenoside Rg1 suppresses hepatic glucose production via AMP-activated protein kinase in HEPG2 cells. Biol Pharm Bull 33:325–328

    PubMed  Google Scholar 

  133. Zhao JQ, Shi Z, Liu S, Li J, Huang W (2014) Ginsenosides Rg1 from Panax ginseng: a potential therapy for acute liver failure patients? Evid Based Complement Alternat Med 538059

    Google Scholar 

  134. Li JJ, Yang C, Zhang S, Liu S, Zhao L, Luo H, Chen Y, Huang W (2018) Ginsenoside Rg1 inhibits inflammatory responses via modulation of the nuclear factor-κB pathway and inhibition of inflammasome activation in alcoholic hepatitis. Int J Mol Med 41:899–907

    CAS  PubMed  Google Scholar 

  135. Chen XJ, Liu WJ, Wen ML, Liang H, Wu SM, Zhu YZ, Zhao JY, Dong XQ, Li MG, Bian L, Zou CG, Ma LQ (2017) Ameliorative effects of compound K and ginsenoside Rh1 on non-alcoholic fatty liver disease in rats. Sci Rep 20(7):41144

    Google Scholar 

  136. Park TY, Hong M, Sung H, Kim S, Suk KT (2017) Effect of Korean Red Ginseng in chronic liver disease. J Ginseng Res 41(4):450–455

    PubMed  Google Scholar 

  137. Hong M, Lee YH, Kim S, Suk KT, Bang CS, Yoon JH, Baik GH, Kim DJ, Kim MJ (2016) Anti-inflammatory and antifatigue effect of Korean Red Ginseng in patients with nonalcoholic fatty liver disease. J Ginseng Res 40:203e10

    Google Scholar 

  138. Jeong H, Kim JW, Yang MS, Park C, Kim JH, Lim CW, Kim B (2018) Beneficial effects of korean red ginseng in the progression of non-alcoholic steatohepatitis via FABP4 modulation. Am J Chin Med 9:1–27

    Google Scholar 

  139. Hong SH, Suk KT, Choi SH, Lee JW, Sung HT, Kim CH, Kim EJ, Kim MJ, Han SH, Kim MY, Baik SK, Kim DJ, Lee GJ, Lee SK, Park SH, Ryu OH (2013) Anti-oxidant and natural killer cell activity of Korean Red Ginseng (Panax ginseng) and urushiol (Rhus vernicifera Stokes) on non- alcoholic fatty liver disease of rat. Food Chem Toxicol 55:586–591

    CAS  PubMed  Google Scholar 

  140. Lee MH, Kim SS, Cho CW, Choi SY, In G, Kim KT (2013) Quality and characteristics of ginseng seed oil treated using different extraction methods. J Ginseng Res 37(4):468–474

    CAS  PubMed  Google Scholar 

  141. Beveridge TH, Li TS, Drover JC (2002) Phytosterol content in American ginseng seed oil. J Agric Food Chem 50(4):744–750

    CAS  PubMed  Google Scholar 

  142. Kochan E, Kołodziej B, Gadomska G, Chmiel A (2008) Ginsenoside contents in Panax quinquefolium organs from field cultivation. Z Naturforsch C J Biosci 63(1–2):91–95

    CAS  PubMed  Google Scholar 

  143. Kim GW, Jo HK, Chung SH (2018) Ginseng seed oil ameliorates hepatic lipid accumulation in vitro and in vivo. J Ginseng Res 42(4):419–428

    PubMed  Google Scholar 

  144. Shu P, Sun M, Li J, Zhang L, Xu H, Lou Y, Ju Z, Wei X, Wu W, Sun N (2019) Chemical constituents from Ginkgo biloba leaves and their cytotoxicity activity. J Nat Med. https://doi.org/10.1007/s11418-019-01359-8

  145. Yan Z, Fan R, Yin S, Zhao X, Liu J, Li L, Zhang W, Ge L (2015) Protective effects of Ginkgo biloba leaf polysaccharide on nonalcoholic fatty liver disease and its mechanisms. Int J Biol Macromol 80:573–580

    CAS  PubMed  Google Scholar 

  146. Wei T, Xiong FF, Wang SD, Wang K, Zhang YY, Zhang QH (2014) Flavonoid ingredients of Ginkgo biloba leaf extract regulate lipid metabolism through Sp1-mediated carnitine palmitoyltranferase 1A up-regulation. J Biomed Sci 21:87

    PubMed  Google Scholar 

  147. Wang SD, Xie ZQ, Chen J, Wang K, Wei T, Zhao AH, Zhang QH (2012) Inhibitory effect of Ginkgo biloba extract on fatty liver: regulation of carnitine palmitoyltransferase 1a and fatty acid metabolism. J Dig Dis 13(10):525–535

    CAS  PubMed  Google Scholar 

  148. Xie ZQ, Liang G, Zhang L, Wang Q, Qu Y, Gao Y, Lin LB, Ye S, Zhang J, Wang H, Zhao GP, Zhang QH (2009) Molecular mechanisms underlying the cholesterol-lowering effect of Ginkgo biloba extract in hepatocytes: a comparative study with lovastatin. Acta Pharmacol Sin 30(9):1262–1275. https://doi.org/10.1038/aps.2009.126

    Article  CAS  PubMed  Google Scholar 

  149. He N, Cai HB, Xie HG, Collins X, Edeki TI, Strom SC (2007) Induction of cyp3a in primary cultures of human hepatocytes by ginkgolides a and B. Clin Exp Pharmacol Physiol 34(7):632–635

    CAS  PubMed  Google Scholar 

  150. Ye N, Wang H, Hong J, Zhang T, Lin C, Meng C (2016) PXR mediated protection against liver inflammation by Ginkgolide A in tetrachloromethane treated mice. Biomol Ther (Seoul) 24(1):40–48. https://doi.org/10.4062/biomolther.2015.077

    Article  CAS  Google Scholar 

  151. Jeong HS, Kim KH, Lee IS, Park JY, Kim Y, Kim KS, Jang HJ (2017) Ginkgolide A ameliorates non-alcoholic fatty liver diseases on high fat diet mice. Biomed Pharmacother 88:625–634. https://doi.org/10.1016/j.biopha.2017.01.114

    Article  CAS  PubMed  Google Scholar 

  152. Li HZ, Wang JH, Niu CC, Pan SH (2015) Intervention effect and mechanism of compound Ginkgo biloba preparations on nonalcoholic fatty liver. Zhongguo Zhong Yao Za Zhi 40(8):1580–1584

    CAS  PubMed  Google Scholar 

  153. Yang Q, Zhao H, Zhou AZ, Lou ZH (2016) Preventive and therapeutic effects of compound ginkgo extract in rats with nonalcoholic steatohepatitis induced by high-fat, high-fructose diet. Zhonghua Gan Zang Bing Za Zhi 24(11):852–858

    CAS  PubMed  Google Scholar 

  154. Calzadilla Bertot L, Adams LA (2016) The natural course of non-alcoholic fatty liver disease. Int J Mol Sci 17(5):pii: E774

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Luis E. Simental-Mendía .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Simental-Mendía, L.E., Gamboa-Gómez, C.I., Guerrero-Romero, F., Simental-Mendía, M., Sánchez-García, A., Rodríguez-Ramírez, M. (2021). Beneficial Effects of Plant-Derived Natural Products on Non-alcoholic Fatty Liver Disease. In: Barreto, G.E., Sahebkar, A. (eds) Pharmacological Properties of Plant-Derived Natural Products and Implications for Human Health. Advances in Experimental Medicine and Biology, vol 1308. Springer, Cham. https://doi.org/10.1007/978-3-030-64872-5_18

Download citation

Publish with us

Policies and ethics