Skip to main content

Security Limitations of Classical-Client Delegated Quantum Computing

Part of the Lecture Notes in Computer Science book series (LNSC,volume 12492)

Abstract

Secure delegated quantum computing allows a computationally weak client to outsource an arbitrary quantum computation to an untrusted quantum server in a privacy-preserving manner. One of the promising candidates to achieve classical delegation of quantum computation is classical-client remote state preparation (\(\mathsf{RSP}_{\mathsf{CC}}\)), where a client remotely prepares a quantum state using a classical channel. However, the privacy loss incurred by employing \(\mathsf{RSP}_{\mathsf{CC}}\) as a sub-module is unclear. In this work, we investigate this question using the Constructive Cryptography framework by Maurer and Renner [MR11]. We first identify the goal of \(\mathsf{RSP}_{\mathsf{CC}}\) as the construction of ideal \(\mathsf{RSP}\) resources from classical channels and then reveal the security limitations of using \(\mathsf{RSP}_{\mathsf{CC}}\). First, we uncover a fundamental relationship between constructing ideal \(\mathsf{RSP}\) resources (from classical channels) and the task of cloning quantum states. Any classically constructed ideal \(\mathsf{RSP}\) resource must leak to the server the full classical description (possibly in an encoded form) of the generated quantum state, even if we target computational security only. As a consequence, we find that the realization of common \(\mathsf{RSP}\) resources, without weakening their guarantees drastically, is impossible due to the no-cloning theorem. Second, the above result does not rule out that a specific \(\mathsf{RSP}_{\mathsf{CC}}\) protocol can replace the quantum channel at least in some contexts, such as the Universal Blind Quantum Computing (\(\mathsf{UBQC}\)) protocol of Broadbent et al. [BFK09]. However, we show that the resulting UBQC protocol cannot maintain its proven composable security as soon as \(\mathsf{RSP}_{\mathsf{CC}}\) is used as a subroutine. Third, we show that replacing the quantum channel of the above \(\mathsf{UBQC}\) protocol by the \(\mathsf{RSP}_{\mathsf{CC}}\) protocol QFactory of Cojocaru et al. [CCKW19] preserves the weaker, game-based, security of \(\mathsf{UBQC}\).

Keywords

  • Remote state preparation
  • Blind quantum computing

This is a preview of subscription content, access via your institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • DOI: 10.1007/978-3-030-64834-3_23
  • Chapter length: 30 pages
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
eBook
USD   109.00
Price excludes VAT (USA)
  • ISBN: 978-3-030-64834-3
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
Softcover Book
USD   149.99
Price excludes VAT (USA)
Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.
Fig. 8.

References

  1. Aharonov, D., Ben-Or, M., Eban, E.: Interactive proofs for quantum computations. arXiv preprint arXiv:0810.5375 (2008)

  2. Aaronson, S., Cojocaru, A., Gheorghiu, A., Kashefi, E.: Complexity-theoretic limitations on blind delegated quantum computation. In: 46th International Colloquium on Automata, Languages, and Programming (ICALP 2019) (2019)

    Google Scholar 

  3. Abadi, M., Feigenbaum, J., Kilian, J.: On hiding information from an oracle. In: Proceedings of the Nineteenth Annual ACM Symposium on Theory of Computing, pp. 195–203. ACM (1987)

    Google Scholar 

  4. Badertscher, C., et al.: Security limitations of classical-client delegated quantum computing. Cryptology ePrint Archive, Report 2020/818 (2020). https://eprint.iacr.org/2020/818 (full version)

  5. Broadbent, A., Fitzsimons, J., Kashefi, E.: Universal blind quantum computation. In: 50th Annual IEEE Symposium on Foundations of Computer Science, FOCS 2009, pp. 517–526. IEEE (2009)

    Google Scholar 

  6. Broadbent, A., Jeffery, S.: Quantum homomorphic encryption for circuits of low T-gate complexity. In: Gennaro, R., Robshaw, M. (eds.) CRYPTO 2015. LNCS, vol. 9216, pp. 609–629. Springer, Heidelberg (2015). https://doi.org/10.1007/978-3-662-48000-7_30

    CrossRef  Google Scholar 

  7. Ben-Or, M., Mayers, D.: General security definition and composability for quantum & classical protocols. arXiv preprint quant-ph/0409062 (2004)

    Google Scholar 

  8. Brakerski, Z.: Quantum FHE (almost) as secure as classical. In: Shacham, H., Boldyreva, A. (eds.) CRYPTO 2018. LNCS, vol. 10993, pp. 67–95. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-96878-0_3

    CrossRef  Google Scholar 

  9. Broadbent, A.: Delegating private quantum computations. Can. J. Phys. 93(9), 941–946 (2015)

    CrossRef  Google Scholar 

  10. Broadbent, A.: How to verify a quantum computation. arXiv preprint arXiv:1509.09180 (2015)

  11. Cojocaru, A., Colisson, L., Kashefi, E., Wallden, P.: On the possibility of classical client blind quantum computing. arXiv preprint arXiv:1802.08759 (2018)

  12. Cojocaru, A., Colisson, L., Kashefi, E., Wallden, P.: QFactory: classically-instructed remote secret qubits preparation. In: Galbraith, S.D., Moriai, S. (eds.) ASIACRYPT 2019. LNCS, vol. 11921, pp. 615–645. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-34578-5_22

    CrossRef  Google Scholar 

  13. Childs, A.M.: Secure assisted quantum computation. Quantum Inf. Comput. 5(6), 456–466 (2005)

    MathSciNet  MATH  Google Scholar 

  14. Dunjko, V., Fitzsimons, J.F., Portmann, C., Renner, R.: Composable security of delegated quantum computation. In: Sarkar, P., Iwata, T. (eds.) ASIACRYPT 2014. LNCS, vol. 8874, pp. 406–425. Springer, Heidelberg (2014). https://doi.org/10.1007/978-3-662-45608-8_22

    CrossRef  Google Scholar 

  15. Danos, V., Kashefi, E.: Determinism in the one-way model. Phys. Rev. A 74(5), 052310 (2006)

    CrossRef  Google Scholar 

  16. Dunjko, V., Kashefi, E.: Blind quantum computing with two almost identical states. arXiv preprint arXiv:1604.01586 (2016)

  17. Dunjko, V., Kashefi, E., Leverrier, A.: Blind quantum computing with weak coherent pulses. Phys. Rev. Lett. 108(20), 200502 (2012)

    CrossRef  Google Scholar 

  18. Davies, E.B., Lewis, J.T.: An operational approach to quantum probability. Commun. Math. Phys. 17(3), 239–260 (1970)

    MathSciNet  CrossRef  Google Scholar 

  19. Dulek, Y., Schaffner, C., Speelman, F.: Quantum homomorphic encryption for polynomial-sized circuits. In: Robshaw, M., Katz, J. (eds.) CRYPTO 2016. LNCS, vol. 9816, pp. 3–32. Springer, Heidelberg (2016). https://doi.org/10.1007/978-3-662-53015-3_1

    CrossRef  Google Scholar 

  20. Fitzsimons, J.F., Hajdušek, M., Morimae, T.: Post hoc verification of quantum computation. Phys. Rev. Lett. 120(4), 040501 (2018)

    MathSciNet  CrossRef  Google Scholar 

  21. Fitzsimons, J.F.: Private quantum computation: an introduction to blind quantum computing and related protocols. NPJ Quantum Inf. 3(1), 23 (2017)

    CrossRef  Google Scholar 

  22. Fitzsimons, J.F., Kashefi, E.: Unconditionally verifiable blind quantum computation. Phys. Rev. A 96(1), 012303 (2017)

    CrossRef  Google Scholar 

  23. Gheorghiu, A., Kapourniotis, T., Kashefi, E.: Verification of quantum computation: an overview of existing approaches. Theory Comput. Syst. 63(4), 715–808 (2019)

    MathSciNet  CrossRef  Google Scholar 

  24. Goldreich, O.: Foundations of Cryptography. Cambridge University Press, Cambridge (2001)

    CrossRef  Google Scholar 

  25. Ghirardi, G.C., Rimini, A., Weber, T.: A general argument against superluminal transmission through the quantum mechanical measurement process. Lettere al Nuovo Cimento (1971–1985) 27, 293–298 (1980)

    Google Scholar 

  26. Gheorghiu, A., Vidick, T.: Computationally-secure and composable remote state preparation. In: 2019 IEEE 60th Annual Symposium on Foundations of Computer Science (FOCS), pp. 1024–1033 (2019)

    Google Scholar 

  27. Hayashi, M., Morimae, T.: Verifiable measurement-only blind quantum computing with stabilizer testing. Phys. Rev. Lett. 115(22), 220502 (2015)

    CrossRef  Google Scholar 

  28. Jost, D., Maurer, U.: Context-restricted indifferentiability: generalizing UCE and implications on the soundness of hash-function constructions. IACR Cryptology ePrint Archive 2017:461 (2017)

    Google Scholar 

  29. Kashefi, E., Music, L., Wallden, P.: The quantum cut-and-choose technique and quantum two-party computation. arXiv preprint arXiv:1703.03754 (2017)

  30. Kashefi, E., Pappa, A.: Multiparty delegated quantum computing. Cryptography 1(2), 12 (2017)

    CrossRef  Google Scholar 

  31. Kashefi, E., Wallden, P.: Garbled quantum computation. Cryptography 1(1), 6 (2017)

    CrossRef  Google Scholar 

  32. Mahadev, U.: Classical homomorphic encryption for quantum circuits. In: Thorup, M. (ed.) 59th IEEE Annual Symposium on Foundations of Computer Science, FOCS 2018, Paris, France, 7–9 October 2018, pp. 332–338. IEEE Computer Society (2018)

    Google Scholar 

  33. Mahadev, U.: Classical verification of quantum computations. In: Thorup, M. (ed.) 59th IEEE Annual Symposium on Foundations of Computer Science, FOCS 2018, Paris, France, 7–9 October 2018, pp. 259–267. IEEE Computer Society (2018)

    Google Scholar 

  34. Mantri, A.: Secure delegated quantum computing, Ph.d. thesis (2019)

    Google Scholar 

  35. Maurer, U.: Constructive cryptography – a new paradigm for security definitions and proofs. In: Mödersheim, S., Palamidessi, C. (eds.) TOSCA 2011. LNCS, vol. 6993, pp. 33–56. Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-642-27375-9_3

    CrossRef  MATH  Google Scholar 

  36. Mantri, A., Demarie, T.F., Fitzsimons, J.F.: Universality of quantum computation with cluster states and (X, Y)-plane measurements. Sci. Rep. 7, 42861 (2017)

    CrossRef  Google Scholar 

  37. Mantri, A., Demarie, T.F., Menicucci, N.C., Fitzsimons, J.F.: Flow ambiguity: a path towards classically driven blind quantum computation. Phys. Rev. X 7(3), 031004 (2017)

    Google Scholar 

  38. Morimae, T., Fujii, K.: Blind quantum computation protocol in which alice only makes measurements. Phys. Rev. A 87(5), 050301 (2013)

    CrossRef  Google Scholar 

  39. Morimae, T., Koshiba, T.: Composable security of measuring-alice blind quantum computation. arXiv preprint arXiv:1306.2113 (2013)

  40. Morimae, T., Koshiba, T.: Impossibility of perfectly-secure delegated quantum computing for classical client. arXiv preprint arXiv:1407.1636 (2014)

  41. Maurer, U., Renner, R.: Abstract cryptography. In: Innovations in Computer Science. Citeseer (2011)

    Google Scholar 

  42. Nielsen, M.A., Chuang, I.: Quantum Computation and Quantum Information. Cambridge University Press, Cambridge (2000)

    MATH  Google Scholar 

  43. Nielsen, M.A.: Cluster-state quantum computation. Rep. Math. Phys. 57(1), 147–161 (2006)

    MathSciNet  CrossRef  Google Scholar 

  44. Raussendorf, R., Briegel, H.J.: A one-way quantum computer. Phys. Rev. Lett. 86(22), 5188 (2001)

    CrossRef  Google Scholar 

  45. Regev, O.: On lattices, learning with errors, random linear codes, and cryptography. J. ACM (JACM) 56(6), 34 (2009)

    MathSciNet  CrossRef  Google Scholar 

  46. Reichardt, B.W., Unger, F., Vazirani, U.: A classical leash for a quantum system: command of quantum systems via rigidity of CHSH games. arXiv preprint arXiv:1209.0448 (2012)

  47. Takeuchi, Y., Mantri, A., Morimae, T., Mizutani, A., Fitzsimons, J.F.: Resource-efficient verification of quantum computing using Serfling’s bound. arXiv preprint arXiv:1806.09138 (2018)

  48. Unruh, D.: Simulatable security for quantum protocols. arXiv preprint quant-ph/0409125 (2004)

    Google Scholar 

  49. Unruh, D.: Universally composable quantum multi-party computation. In: Gilbert, H. (ed.) EUROCRYPT 2010. LNCS, vol. 6110, pp. 486–505. Springer, Heidelberg (2010). https://doi.org/10.1007/978-3-642-13190-5_25

    CrossRef  Google Scholar 

  50. Vidick, T.: Verifying quantum computations at scale: a cryptographic leash on quantum devices. Bull. Am. Math. Soc. 57(1), 39–76 (2020)

    MathSciNet  CrossRef  Google Scholar 

  51. Zhang, J.: Succinct blind quantum computation using a random oracle. arXiv, abs/2004.12621 (2020)

    Google Scholar 

Download references

Acknowledgments

The authors thank Céline Chevalier, Omar Fawzi, Daniel Jost, and Luka Music for very useful discussions and the anonymous reviewers of ASIACRYPT 2020 for their comments and suggestions that greatly improved this work. LC also thanks M.T. This work has been supported in part by grant FA9550-17-1-0055, by the European Union’s H2020 Programme under grant agreement number ERC-669891, and by the French ANR Project ANR-18-CE39-0015 (CryptiQ). EK acknowledges support from the EPSRC Verification of Quantum Technology grant (EP/N003829/1), the EPSRC Hub in Quantum Computing and Simulation (EP/T001062/1), and the UK Quantum Technology Hub: NQIT grant (EP/M013243/1). LC and DL gratefully acknowledge support from the French ANR project ANR-18-CE47-0010 (QUDATA). LC, EK, and DL acknowledge funding from the EU Flagship Quantum Internet Alliance (QIA) project. AM gratefully acknowledges funding from the AFOSR MURI project “Scalable Certification of Quantum Computing Devices and Networks”. This work was partly done while AM was at the University of Edinburgh, UK supported by EPSRC Verification of Quantum Technology grant (EP/N003829/1).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Léo Colisson .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and Permissions

Copyright information

© 2020 International Association for Cryptologic Research

About this paper

Verify currency and authenticity via CrossMark

Cite this paper

Badertscher, C. et al. (2020). Security Limitations of Classical-Client Delegated Quantum Computing. In: Moriai, S., Wang, H. (eds) Advances in Cryptology – ASIACRYPT 2020. ASIACRYPT 2020. Lecture Notes in Computer Science(), vol 12492. Springer, Cham. https://doi.org/10.1007/978-3-030-64834-3_23

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-64834-3_23

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-64833-6

  • Online ISBN: 978-3-030-64834-3

  • eBook Packages: Computer ScienceComputer Science (R0)