Skip to main content

Vibroacoustic Testing of Panels Under a Turbulent Boundary Layer Excitation Using a Space-Time Spectral Synthesis Approach

  • 474 Accesses

Abstract

The experimental study of a structure’s response to a turbulent boundary layer (TBL) excitation using wind-tunnel or in-vehicle testing generally requires considerable efforts, including the measurement of both turbulent wall-pressure fluctuations and the structure’s vibration response. As an alternative method to highly demanding testing procedures and numerical simulations, this paper proposes a computationally efficient method to predict vibroacoustic responses of a panel under a TBL excitation. Space-time realizations of a TBL wall pressure field obtained using a spectral synthesis approach are coupled to a deterministic model so as to predict mean quadratic velocity, and radiated sound pressure and power from a panel under a TBL excitation. Each realization of the wall pressure field and obtained vibroacoustic results can be considered as a virtual experiment. The radiated sound pressure as a function of time can be also obtained, and possibly later used for listening and psychoacoustics studies objectives. A summary of existing experimental and numerical methods for obtaining the vibroacoustic response of panels to a TBL excitation is first presented. The proposed method is then detailed. Results obtained using this method are finally compared to results obtained using controlled laboratory experiments and analytical calculations for a low subsonic flow speed.

This is a preview of subscription content, access via your institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   189.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   249.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. E. Ciappi, S. De Rosa, F. Franco, J.-L. Guyader, S.A. Hambric (eds.), Flinovia - Flow Induced Noise and Vibration Issues and Aspects - A Focus on Measurement, Modeling, Simulation and Reproduction of the Flow Excitation and Flow Induced Response (Springer, 2015), 358pp

    Google Scholar 

  2. E. Ciappi, S. De Rosa, F. Franco, J.-L. Guyader, S.A. Hambric, R.C.K. Leung, A.D. Hanford (eds.), Flinovia - Flow Induced Noise and Vibration Issues and Aspects II - A Focus on Measurement, Modeling, Simulation and Reproduction of the Flow Excitation and Flow Induced Response (Springer, 2017), 372pp

    Google Scholar 

  3. G.R. Ludwig, An experimental investigation of the sound generated by thin steel panels excited by turbulent flow (boundary layer noise). UTIA report NO. 87 (1962)

    Google Scholar 

  4. L. Maestrello, Measurement of noise radiated by boundary layer excited panels. J. Sound Vib. 2(2), 100–115 (1965)

    CrossRef  Google Scholar 

  5. D.A. Bies, A review of flight and wind tunnel measurements of boundary layer pressure fluctuations and induced structural response. NASA CR626 (1966), 96pp

    Google Scholar 

  6. H.G. Davies, Sound from turbulent-boundary-layer-excited panels. J. Acoust. Soc. Am. 49(3B), 878–889 (1969)

    CrossRef  Google Scholar 

  7. G.M. Corcos, Resolution of pressure in turbulence. J. Acoust. Soc. Am. 35, 192–199 (1963)

    CrossRef  Google Scholar 

  8. M. Bull, Wall-pressure fluctuations associated with subsonic turbulent boundary layer flow. J. Fluid Mech. 28(4), 719–754 (1967)

    CrossRef  Google Scholar 

  9. N. Hu, C. Appel, S. Haxter, S. Callsen, A. Klabes, Simulation of wall pressure fluctuations on Airbus-A320 fuselage in cruise flight condition, in 25th AIAA/CEAS Aeroacoustics Conference, Delft, The Netherlands, 20–23 May 2019 (2019)

    Google Scholar 

  10. S.L. Prigent, É. Salze, C. Bailly, Deconvolution of wave-number-frequency spectra of wall pressure fluctuations. AIAA J. 58(1), 164–173 (2020)

    CrossRef  Google Scholar 

  11. Y.M. Chang, P. Leehey, Vibration of and acoustic radiation from a panel excited by adverse pressure gradient flow. MIT report No. 70208-12 (1976), pp. 1–33

    Google Scholar 

  12. M. Smith, E. Latorre Iglesias, Vibration and noise radiation from a panel excited by a turbulent flow, in Proceedings of Acoustics, Société Française d’Acoustique. Nantes, France (2012), pp. 1845–1850

    Google Scholar 

  13. B. Liu, H. Zhang, Z. Qian, D. Chang, Q. Yan, W. Huang, Influence of stiffeners on plate vibration and radiated noise excited by turbulent boundary layers. Appl. Acoust. 80, 28–35 (2014)

    CrossRef  Google Scholar 

  14. J. Osterziel, F.J. Zenger, S. Becker, Sound radiation of aerodynamically excited flat plates into cavities. Appl. Sci. 7, 1062 (2017)

    CrossRef  Google Scholar 

  15. N. Oettle, D. Sims-Williams, Automotive aeroacoustics: an overview. Proc. Inst. Mech. Eng. Part D: J. Automob. Eng. 231(9), 1177–1189 (2017)

    CrossRef  Google Scholar 

  16. M.K. Bull, Wall-pressure fluctuations beneath turbulent boundary layers: some reflections on forty years of research. J. Sound Vib. 190(3), 299–315 (1996)

    CrossRef  Google Scholar 

  17. O. Kirkeby, P.A. Nelson, Reproduction of plane wave sound fields. J. Acoust. Soc. Am. 94(5), 2992–3000 (1993)

    CrossRef  Google Scholar 

  18. T. Bravo, C. Maury, The experimental synthesis of random pressure fields: methodology. J. Acoust. Soc. Am. 120, 2702 (2006)

    CrossRef  Google Scholar 

  19. N.B. Roozen, Q. Leclère, D. Urbán, L. Kritly, C. Glorieux, Assessment of the sound reduction index of building elements by near field excitation through an array of loudspeakers and structural response measurements by laser Doppler vibrometry. Appl. Acoust. 140, 225–235 (2018)

    CrossRef  Google Scholar 

  20. T. Bravo, C. Maury, A synthesis approach for reproducing the response of aircraft panels to a turbulent boundary layer excitation. J. Acoust. Soc. Am. 129(1), 143–153 (2011)

    CrossRef  Google Scholar 

  21. C. Maury, T. Bravo, Laboratory synthesis of the response of aircraft panels to a turbulent boundary layer excitation. J. Sound Vib. 330, 4970–4971 (2011). Invited contribution in Aeroacoustics research in Europe: The CEAS-ASC report on 2010 highlights

    Google Scholar 

  22. M. Aucejo, L. Maxit, J.-L. Guyader, Experimental simulation of turbulent boundary layer induced vibrations by using a synthetic array. J. Sound Vib. 331(16), 3824–3843 (2012)

    CrossRef  Google Scholar 

  23. O. Robin, A. Berry, S. Moreau, Experimental vibroacoustic testing of plane panels using synthesized random pressure fields. J. Acoust. Soc. Am. 135, 3434 (2014)

    CrossRef  Google Scholar 

  24. C.A. Merlo, A.M. Pasqual, E.B. Medeiros, Sound field synthesis on flat panels using a planar source array controlled by its active and reactive radiation modes. Acta Acust. United Acust. 105, 139–151 (2019)

    CrossRef  Google Scholar 

  25. A.M. Pasqual, Analysis of the complex sound power in the near field of spherical loudspeaker arrays. J. Sound Vib. 456, 331–352 (2019)

    CrossRef  Google Scholar 

  26. C. Marchetto, L. Maxit, O. Robin, A. Berry, Experimental prediction of the vibration response of panels under a turbulent boundary layer excitation from sensitivity functions. J. Acoust. Soc. Am. 143(5), 2954–2964 (2018)

    CrossRef  Google Scholar 

  27. C.S. Wolowicz, J.S. Bowman, W.P. Gilbert, Similitude requirements and scaling relationships as applied to model testing. NASA Technical paper 1435 (1979)

    Google Scholar 

  28. A. Casaburo, G. Petrone, F. Franco, S. De Rosa. A review of similitude methods for structural engineering. ASME Appl. Mech. Rev. 71(3), 030802 (2019)

    Google Scholar 

  29. X. Zhao, B. Ai, Predicting the structural response induced by turbulent boundary layer in wind tunnel. AIAA J. 55(4), 1221–1229 (2017)

    CrossRef  Google Scholar 

  30. F. Franco, O. Robin, E. Ciappi, S. De Rosa, A. Berry, G. Petrone, Similitude laws for the structural response of flat plates under a turbulent boundary layer excitation. Mech. Syst. Signal Process. 129, 590–613 (2019)

    CrossRef  Google Scholar 

  31. H. Yao, L. Davidson, Vibro-acoustics response of a simplified glass window excited by the turbulent wake of a quarter-spherocylinder body. J. Acoust. Soc. Am. 145(5), 3163–3176 (2019)

    CrossRef  Google Scholar 

  32. P. Druault, A. Hekmati, D. Ricot, Discrimination of acoustic and turbulent components from aeroacoustic wall pressure field. J. Sound Vib. 32(26), 7257–7278 (2013)

    CrossRef  Google Scholar 

  33. N. Hu, N. Reiche, R. Ewert, Simulation of turbulent boundary layer wall pressure fluctuations via Poisson equation and synthetic turbulence. J. Fluid Mech. 826, 421–454 (2017)

    CrossRef  MathSciNet  Google Scholar 

  34. C. Hong, K.-K. Shin, Modeling of wall pressure fluctuations for finite element structural analysis. J. Sound Vib. 329(10) (2010)

    Google Scholar 

  35. A. Hekmati, D. Ricot, P. Druault, Numerical synthesis of aeroacoustic wall pressure fields over a flat plate: Generation, transmission and radiation analyses. J. Sound Vib. 332(13), 3163–3176 (2013). https://doi.org/10.1016/j.jsv.2013.01.019

    CrossRef  Google Scholar 

  36. M. Karimi, P. Croaker, H. Peters, S. Marburg, A. Skvortsov, N. Kessissoglou, Vibro-acoustic response of a flat plate under turbulent boundary layer excitation, in Proceedings of NOVEM 2018 - Noise and Vibration Emerging Methods, Ibiza, Spain (2018)

    Google Scholar 

  37. M. Karimi, P. Croaker, L. Maxit, O. Robin, A. Skvortsov, S. Marburg, N. Kessissoglou, A hybrid numerical approach to predict the vibrational responses of panels excited by a turbulent boundary layer. J. Fluids Struct. 92, 102814 (2020)

    CrossRef  Google Scholar 

  38. L. Maxit, Simulation of the pressure field beneath a turbulent boundary layer using realizations of uncorrelated wall plane waves. J. Acoust. Soc. Am. 140, 1268 (2016)

    CrossRef  Google Scholar 

  39. O. Robin, M. Pachebat, N. Totaro, A. Berry, Évaluation d’une méthode de synthèse spectrale 2D+T pour la transparence de parois sous champ acoustique diffus. CFA, VISHNO, Le Mans, France, April 2016 (2016)

    Google Scholar 

  40. M. Jenzri, O. Robin, N. Atalla, Vibration of and radiated acoustic power from a simply-supported panel excited by a turbulent boundary layer excitation at low Mach number. Noise Control. Eng. J. 67(4), 241–251 (2019)

    CrossRef  Google Scholar 

  41. X. Gloerfelt, J. Berland, Direct computation of turbulent boundary layer noise, in Proceedings of the 15th AIAA/CEAS Aeroacoustics Conference (30th AIAA Aeroacoustics Conference), May 2009. American Institute of Aeronautics and Astronautics (2009)

    Google Scholar 

  42. L.E. Wittig, A.K. Sinha, Simulation of multicorrelated random processes using the FFT algorithm. J. Acoust. Soc. Am. 58, 630–634 (1975)

    CrossRef  Google Scholar 

  43. R.B. Davies, D.S. Harte, Tests for Hurst effect. Biometrika 74(1), 95–101 (1987)

    CrossRef  MathSciNet  Google Scholar 

  44. A. Papoulis, U. Pillai, Probability, Random Variables and Stochastic Processes. McGraw-Hill Higher Education (2002), pp. 515–519

    Google Scholar 

  45. G. Schewe, On the structure and resolution of wall-pressure fluctuations associated with turbulent boundary-layer flow. J. Fluid Mech. 134, 311–328 (1983)

    CrossRef  Google Scholar 

  46. R.H. Mellen, Wave-vector filter analysis of turbulent flow. J. Acoust. Soc. Am. 95, 1671–1673 (1994)

    CrossRef  Google Scholar 

  47. O. Robin, J.-D. Chazot, R. Boulandet, M. Michau, A. Berry, N. Atalla, A plane and thin panel with representative simply supported boundary conditions for laboratory vibroacoustic tests. Acta Acust. United Acust. 102(1), 170–182 (2016)

    CrossRef  Google Scholar 

  48. O. Robin, S. Moreau, T. Padois, A. Berry. Measurement of the wavenumber-frequency spectrum of wall pressure fluctuations: spiral-shaped rotative arrays with pinhole-mounted quarter inch microphones, in Proceedings of the 19th AIAA/CEAS Aeroacoustics Conference, Berlin, Germany (2013)

    Google Scholar 

  49. ISO 3744:2015, Acoustics – determination of sound power levels and sound energy levels of noise sources using sound pressure – engineering methods for an essentially free field over a reflecting plane. International Organization for Standardization, Geneva, Switzerland

    Google Scholar 

  50. R.E. Crochiere, A weighted overlap-add method of short-time Fourier analysis/synthesis. IEEE Trans. Acoust. Speech Signal Process. 28(1) 99–102 (1980)

    Google Scholar 

  51. J.O. Smith. Spectral Audio Signal Processing, online book, 2011 edn. (2019), https://ccrma.stanford.edu/~jos/sasp/. Accessed Dec 2019

  52. A. Dijckmans, G. Vermeir, Numerical investigation of the repeatability and reproducibility of laboratory sound insulation measurements. Acta Acust. united with Acust. 99(3), 421–432 (2013)

    CrossRef  Google Scholar 

Download references

Acknowledgements

This work was performed within the framework of the Labex CeLyA of “Université de Lyon” (ANR-10-LABX-0060/ANR-11-IDEX-0007) and of the VIRTECH project (ANR-17-CE10-0012), operated by the French National Research Agency. The support of “International Research Project—Centre Acoustique Jacques Cartier” (supported by the French National Research Agency) is also acknowledged. Finally, the authors thank Pierre Chainais for his fruitful suggestions that rooted this work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Olivier Robin .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and Permissions

Copyright information

© 2021 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Robin, O., Pachebat, M., Totaro, N., Berry, A. (2021). Vibroacoustic Testing of Panels Under a Turbulent Boundary Layer Excitation Using a Space-Time Spectral Synthesis Approach. In: Ciappi, E., et al. Flinovia—Flow Induced Noise and Vibration Issues and Aspects-III. FLINOVIA 2019. Springer, Cham. https://doi.org/10.1007/978-3-030-64807-7_5

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-64807-7_5

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-64806-0

  • Online ISBN: 978-3-030-64807-7

  • eBook Packages: EngineeringEngineering (R0)