Skip to main content

Leveraging Flow-Induced Vibration for Manipulation of Airfoil Tonal Noise

  • Conference paper
  • First Online:
Flinovia—Flow Induced Noise and Vibration Issues and Aspects-III (FLINOVIA 2019)

Abstract

A novel method for reduction in the airfoil tonal noise using flow-induced vibrations is explored by using a flush-mounted elastic panel over the suction surface of a NACA 0012 airfoil at low Reynolds number of \(5\times 10^4\). The fundamental aim of this approach is to reduce the airfoil tonal noise while maintaining laminar boundary layer over the airfoil with minimum or no penalty on the aerodynamic performance of the airfoil. Direct aeroacoustics simulation using conservation element and solution element method along with linear stability analysis is employed to study the aeroacoustic structural interaction between the flow field and elastic panel. Panel parameters are carefully selected to ensure that the natural frequency of panel in the presence of flow field coincides with the first dominant frequency of naturally evolving boundary layer disturbance on the airfoil suction surface. To gain further insight on the sensitivity of panel parameters on its vibration behavior and magnitude of reduction in tonal noise, a parametric study is also carried out. Contributions of panel density and thickness are found to be dominant in noise reduction. A maximum sound pressure level reduction of 2.74 dB is achieved for the current flow conditions through the proposed strategy.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 219.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 279.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 279.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. R.W. Paterson, P.G. Vogt, M.R. Fink, C.L. Munch, Vortex noise of isolated airfoils. J. Aircraft 10(5), 296–302 (1973)

    Article  Google Scholar 

  2. C.K. Tam, Discrete tones of isolated airfoils. J. Acoustic. Soc. Am. 55(6), 1173–1177 (1974)

    Article  Google Scholar 

  3. R.E. Longhouse, Vortex shedding noise of low tip speed, axial flow fans. J. Sound Vibrat. 53(1), 25–46 (1977)

    Article  Google Scholar 

  4. H. Arbey, J. Bataille, Noise generated by airfoil profiles placed in a uniform laminar flow. J. Fluid Mech. 134, 33–47 (1983)

    Article  Google Scholar 

  5. E.C. Nash, M.V. Lowson, A. McAlpine, Boundary-layer instability noise on aerofoils. J. Fluid Mech. 382, 27–61 (1999)

    Article  Google Scholar 

  6. G. Desquesnes, M. Terracol, P. Sagaut, Numerical investigation of the tone noise mechanism over laminar airfoils. J. Fluid Mech. 591, 155–182 (2007)

    Article  Google Scholar 

  7. L. Jones, R. Sandberg, N. Sandham, Stability and receptivity characteristics of a laminar separation bubble on an aerofoil. J. Fluid Mech. 648, 257–296 (2010)

    Article  Google Scholar 

  8. M. Fosas de Pando,P.J. Schmid, D. Sipp, A global analysis of tonal noise in flows around aerofoils. J. Fluid Mech. 754, 5–38 (2014)

    Google Scholar 

  9. K. Braun, N. Van der Borg, A. Dassen, F. Doorenspleet, Gordner, A., Ocker, J., Parchen, Serrated trailing edge noise. In: European Wind Energy Conference. pp. 180–183 (1999)

    Google Scholar 

  10. M.S. Howe, Noise produced by a sawtooth trailing edge. J. Acoustic. Soc. Am. 90(1), 482–487 (1991)

    Article  Google Scholar 

  11. S. Oerlemans, M. Fisher, T. Maeder, K. Kögler, Reduction of wind turbine noise using optimized airfoils and trailing-edge serrations. AIAA J. 47(6), 1470–1481 (2009)

    Article  Google Scholar 

  12. M. Gruber, P. Joseph, T.P. Chong, Experimental investigation of airfoil self noise and turbulent wake reduction by the use of trailing edge serrations. In: 16th AIAA/CEAS aeroacoustics conference. pp. 3803–3825 (2010)

    Google Scholar 

  13. D.J. Moreau, C.J. Doolan, Noise-reduction mechanism of a flat-plate serrated trailing edge. AIAA J. 51(10), 2513–2522 (2013)

    Article  Google Scholar 

  14. T. Geyer, E. Sarradj, C. Fritzsche, Measurement of the noise generation at the trailing edge of porous airfoils. Experiments Fluids 48(2), 291–308 (2010)

    Article  Google Scholar 

  15. E. Talboys, T.F. Geyer, C. Brücker, An aeroacoustic investigation into the effect of self-oscillating trailing edge flaplets. J. Fluids Struct. pp. 2–11 (2019)

    Google Scholar 

  16. K. Hansen, C. Doolan, R. Kelso, Reduction of flow induced airfoil tonal noise using leading edge sinusoidal modifications. Acoustics Australia 40(3), 1–6 (2012)

    Google Scholar 

  17. X. Wang, S. Chang, P., Jorgenson, Numerical simulation of aeroacoustic field in a 2D cascade involving a downstream moving grid using the space-time CE/SE method. Computational Fluid Dynamics pp. 157–169 (2000)

    Google Scholar 

  18. G.C.Y. Lam, R.C.K. Leung, K.H. Seid, S.K. Tang, Validation of CE/SE scheme for low mach number direct aeroacoustic simulation. Int. J. Nonlinear Sci. Numeric. Simulat. 15(2), 157–169 (2014)

    MathSciNet  MATH  Google Scholar 

  19. X. Gloerfelt, C. Bailly, D. Juvé, Direct computation of the noise radiated by a subsonic cavity flow and application of integral methods. J. Sound Vibrat. 266(1), 119–146 (2003)

    Article  Google Scholar 

  20. S.C. Chang, The method of space-time conservation element and solution element-a new approach for solving the Navier-Stokes and Euler equations. J. Computat. Phys. 119, 295–324 (1995)

    Article  MathSciNet  Google Scholar 

  21. B.S. Venkatachari, G.C. Cheng, B.K. Soni, S. Chang, Validation and verification of courant number insensitive conservation element and solution element method for transient viscous flow simulations. Math. Comput. Simulat. 78(5–6), 653–670 (2008)

    Article  Google Scholar 

  22. C. Loh, L. Hultgren, P. Jorgenson, Near field screech noise computation for an underexpanded supersonic jet by the conservation element and solution element method. In: 7th AIAA/CEAS Aeroacoustics Conference and Exhibit, pp. 2252–2262 (2001)

    Google Scholar 

  23. P. Huerre, P.A. Monkewitz, Local and global instabilities in spatially developing flows. Ann. Rev. Fluid Mech. 22(1), 473–537 (1990)

    Article  MathSciNet  Google Scholar 

  24. L.M. Mack, Linear stability theory and the problem of supersonic boundary-layer transition. AIAA J. 13(3), 278–289 (1975)

    Article  Google Scholar 

  25. L.E. Jones, R.D. Sandberg, Numerical analysis of tonal airfoil self-noise and acoustic feedback-loops. J. Sound Vibrat. 330(25), 6137–6152 (2011)

    Article  Google Scholar 

  26. D. Wu, G.C.Y. Lam, R.C.K. Leung, An attempt to reduce airfoil tonal noise using fluid-structure interaction. In: 2018 AIAA/CEAS Aeroacoustics Conference. pp. 3790–3816 (2018)

    Google Scholar 

  27. J.H. Almutairi, L.E. Jones, N.D. Sandham, Intermittent bursting of a laminar separation bubble on an airfoil. AIAA J. 48(2), 414–426 (2010)

    Article  Google Scholar 

  28. C. Loh, On a non-reflecting boundary condition for hyperbolic conservation laws. In: 16th AIAA Computational Fluid Dynamics Conference. p. 3975 (2003)

    Google Scholar 

  29. E.H. Dowell, E.H., Aeroelasticity of plates and shells, vol. 1. Springer Science & Business Media (1974)

    Google Scholar 

  30. H.K.H. Fan, R.C.K. Leung, G.C.Y. Lam, Y. Aurégan, X. Dai, Numerical coupling strategy for resolving in-duct elastic panel aeroacoustic/structural interaction. AIAA Journal 56(12), 5033–5040 (2018)

    Article  Google Scholar 

  31. R.D. Blevins, Formulas for natural frequency and mode shape (Van Nostrand Reinhold, New York, 1979)

    Google Scholar 

  32. I. Arif, Lam, G.C.Y., Leung, R.C.K., D. Wu, Leveraging surface aeroacoustic-structural interaction for airfoil tonal noise reduction—a parametric study. In: 25th AIAA/CEAS Aeroacoustics Conference. pp. 2758–2773 (2019)

    Google Scholar 

Download references

Acknowledgements

The authors gratefully acknowledge the support given by the Central Research Grant of the Hong Kong Polytechnic University (PolyU) under grant no. G-YBGF. The third author acknowledges the support from a research donation from the Philip K. H. Wong Foundation under grant no. 5-ZH1X. The first and fourth authors gratefully acknowledge the support with research studentship tenable at Department of Mechanical Engineering, PolyU.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Irsalan Arif .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Arif, I., Lam, G.C.Y., Leung, R.C.K., Wu, D. (2021). Leveraging Flow-Induced Vibration for Manipulation of Airfoil Tonal Noise. In: Ciappi, E., et al. Flinovia—Flow Induced Noise and Vibration Issues and Aspects-III. FLINOVIA 2019. Springer, Cham. https://doi.org/10.1007/978-3-030-64807-7_17

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-64807-7_17

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-64806-0

  • Online ISBN: 978-3-030-64807-7

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics