A. Auger, B. Doerr (eds.), Theory of Randomized Search Heuristics: Foundations and Recent Developments (World Scientific, Singapore, 2011)
MATH
Google Scholar
R. Battiti, M. Brunato, The lion way: machine learning plus intelligent optimization. LIONlab, University of Trento, Italy, 94 (2014)
Google Scholar
Z. Beheshti, S.M.H. Shamsuddin, A review of population-based meta-heuristic algorithms. Int. J. Adv. Soft Comput. Appl. 5(1), 1–35 (2013)
Google Scholar
J. Branke, Evolutionary Optimization in Dynamic Environments (Springer, Berlin, 2012)
MATH
Google Scholar
P. Cooke, Optimal linear estimation of bounds of random variables. Biometrika 67, 257–258 (1980)
MathSciNet
MATH
CrossRef
Google Scholar
L. De Haan, L. Peng, Comparison of tail index estimators. Statistica Neerlandica 52(1), 60–70 (1998)
MathSciNet
MATH
CrossRef
Google Scholar
K. Deb, An efficient constraint handling method for genetic algorithms. Comput. Methods Appl. Mech. Eng. 186(2–4), 311–338 (2000)
MATH
CrossRef
Google Scholar
H. Dette, A. Pepelyshev, A. Zhigljavsky, Optimal design for linear models with correlated observations. Ann. Stat. 41(1), 143–176 (2013)
MathSciNet
MATH
CrossRef
Google Scholar
H. Dette, A. Pepelyshev, A. Zhigljavsky, Optimal designs in regression with correlated errors. Ann. Stat. 44(1), 113 (2016)
Google Scholar
K.-L. Du, M. Swamy, Search and Optimization by Metaheuristics (Birkhauser, Basel, 2016)
MATH
CrossRef
Google Scholar
N. Dunford, J.T. Schwartz, Linear Operators. Part I (Wiley, New York, 1988)
Google Scholar
M. Gendreau, J.-Y. Potvin, others (eds.), Handbook of Metaheuristics, Vol. 2 (Springer, New York, 2010)
Google Scholar
J. Gillard, K. Usevich, Structured low-rank matrix completion for forecasting in time series analysis. Int. J. Forecast. 34(4), 582–597 (2018)
CrossRef
Google Scholar
J. Gillard, A. Zhigljavsky, Optimization challenges in the structured low rank approximation problem. J. Global Optim. 57(3), 733–751 (2013)
MathSciNet
MATH
CrossRef
Google Scholar
J. Gillard, A. Zhigljavsky, Stochastic algorithms for solving structured low-rank matrix approximation problems. Commun. Nonlinear Sci. Numer. Simul. 21(1–3), 70–88 (2015)
MathSciNet
MATH
CrossRef
Google Scholar
J. Gillard, A. Zhigljavsky, Weighted norms in subspace-based methods for time series analysis. Numer. Linear Algebra Appl. 23(5), 947–967 (2016)
MathSciNet
MATH
CrossRef
Google Scholar
J. Gillard, A. Zhigljavsky, Optimal directional statistic for general regression. Stat. Probab. Lett. 143, 74–80 (2018)
MathSciNet
MATH
CrossRef
Google Scholar
J. Gillard, A. Zhigljavsky, Optimal estimation of direction in regression models with large number of parameters. Appl. Math. Comput. 318, 281–289 (2018)
MATH
Google Scholar
F.W. Glover, G.A. Kochenberger (eds.), Handbook of Metaheuristics (Springer, New York, 2006)
MATH
Google Scholar
D.E. Goldberg, Genetic Algorithm in Search, Optimization and Machine Learning (Addison-Wesley, Reading, 1989)
MATH
Google Scholar
E.M.T. Hendrix, O. Klepper, On uniform covering, adaptive random search and raspberries. J. Global Optim. 18(2), 143–163 (2000)
MathSciNet
MATH
CrossRef
Google Scholar
E.M.T. Hendrix, B.G.-Tóth, Introduction to Nonlinear and Global Optimization, Vol. 37 (Springer, New York, 2010)
Google Scholar
J. Hooker, Testing heuristics: we have it all wrong. J. Heuristics 1, 33–42 (1995)
MATH
CrossRef
Google Scholar
N. Ketkar, Stochastic gradient descent. In: Deep Learning with Python, pp 113–132 (Springer, New York, 2017)
Google Scholar
M.A. Krasnosel′skij, J.A. Lifshits, A.V. Sobolev, Positive Linear Systems (Heldermann Verlag, Berlin, 1989)
Google Scholar
P. Kulczycki, S. Lukasik, An algorithm for reducing the dimension and size of a sample for data exploration procedures. Int. J. Appl. Math. Comput. Sci. 24(1), 133–149 (2014)
MathSciNet
MATH
CrossRef
Google Scholar
V.B. Nevzorov, Records: Mathematical Theory (American Mathematical Society, Providence, 2001)
Google Scholar
J. Noonan, A. Zhigljavsky, Appriximation of the covering radius in high dimensions (2021, in preparation)
Google Scholar
P. Pardalos, A. Zhigljavsky, J. Žilinskas, Advances in Stochastic and Deterministic Global Optimization (Springer, Switzerland, 2016)
MATH
CrossRef
Google Scholar
N.R. Patel, R.L. Smith, Z.B. Zabinsky, Pure adaptive search in Monte Carlo optimization. Math. Program. 43(1–3), 317–328 (1989)
MathSciNet
MATH
CrossRef
Google Scholar
M. Pelikan, Hierarchical Bayesian Optimization Algorithm (Springer, Berlin, Heidelberg, 2005)
MATH
CrossRef
Google Scholar
A. Pepelyshev, A. Zhigljavsky, A. Žilinskas, Performance of global random search algorithms for large dimensions. J. Global Optim. 71(1), 57–71 (2018)
MathSciNet
MATH
CrossRef
Google Scholar
J. Pintér, Convergence properties of stochastic optimization procedures. Optimization 15(3), 405–427 (1984)
MathSciNet
MATH
Google Scholar
J. Pinter, Global Optimization in Action (Kluwer Academic Publisher, Dordrecht, 1996)
MATH
CrossRef
Google Scholar
L. Pronzato, A. Zhigljavsky, Algorithmic construction of optimal designs on compact sets for concave and differentiable criteria. J. Stat. Plann. Inference 154, 141–155 (2014)
MathSciNet
MATH
CrossRef
Google Scholar
C.R. Reeves, J.E. Rowe, Genetic Algorithms: Principles and Perspectives (Kluwer, Boston, 2003)
MATH
Google Scholar
C. Ribeiro, P. Hansen (eds.), Essays and Surveys in Metaheuristics (Springer, New York, 2012)
Google Scholar
A.H.G. Rinnooy Kan, G.T. Timmer, Stochastic global optimization methods. Part I: clustering methods. Math. Program. 39(1), 27–56 (1987)
MathSciNet
MATH
Google Scholar
S.K. Sahu, A. Zhigljavsky, Self-regenerative Markov chain Monte Carlo with adaptation. Bernoulli 9(3), 395–422 (2003)
MathSciNet
MATH
CrossRef
Google Scholar
D. Simon, Evolutionary Optimization Algorithms (Wiley, Chichester, 2013)
Google Scholar
F. Solis, R. Wets, Minimization by random search techniques. Math. Oper. Res. 6(1), 19–30 (1981)
MathSciNet
MATH
CrossRef
Google Scholar
D. Tarłowski, On the convergence rate issues of general Markov search for global minimum. J. Global Optim. 69(4), 869–888 (2017)
MathSciNet
MATH
CrossRef
Google Scholar
A.S. Tikhomirov, On the convergence rate of the simulated annealing algorithm. Comput. Math. Math. Phys. 50(1), 19–31 (2010)
MathSciNet
MATH
CrossRef
Google Scholar
A. Tikhomirov, T. Stojunina, V. Nekrutkin, Monotonous random search on a torus: integral upper bounds for the complexity. J. Stat. Plann. Inference 137(12), 4031–4047 (2007)
MathSciNet
MATH
CrossRef
Google Scholar
A. Törn, A. Žilinskas, Global Optimization (Springer, Berlin, 1989)
MATH
CrossRef
Google Scholar
W. Tu, W. Mayne, Studies of multi-start clustering for global optimization. Int. J. Numer. Meth. Eng. 53, 2239—2252 (2002)
MathSciNet
MATH
CrossRef
Google Scholar
P. Van Laarhoven, E. Aarts, Simulated Annealing: Theory and Applications (Kluwer, Dordrecht, 1987)
MATH
CrossRef
Google Scholar
Z.B. Zabinsky, Stochastic Adaptive Search for Global Optimization (Kluwer, Boston, 2003)
MATH
CrossRef
Google Scholar
A. Zhigljavsky, Mathematical Theory of Global Random Search (Leningrad University Press, Leningrad, 1985). in Russian
Google Scholar
A. Zhigljavsky, Branch and probability bound methods for global optimization. Informatica 1(1), 125–140 (1990)
MathSciNet
MATH
Google Scholar
A. Zhigljavsky, Theory of Global Random Search (Kluwer, Dordrecht, 1991)
CrossRef
Google Scholar
A. Zhigljavsky, E. Hamilton, Stopping rules in k-adaptive global random search algorithms. J. Global Optim. 48(1), 87–97 (2010)
MathSciNet
MATH
CrossRef
Google Scholar
A. Zhigljavsky, A. Žilinskas, Stochastic Global Optimization (Springer, New York, 2008)
MATH
Google Scholar
R. Zieliński, A statistical estimate of the structure of multi-extremal problems. Math. Program. 21, 348–356 (1981)
MathSciNet
MATH
CrossRef
Google Scholar
A. Žilinskas, A. Zhigljavsky, Branch and probability bound methods in multi-objective optimization. Optim. Lett. 10(2), 1–13 (2016)
MathSciNet
MATH
CrossRef
Google Scholar
A. Žilinskas, J. Gillard, M. Scammell, A. Zhigljavsky, Multistart with early termination of descents. J. Global Optim. 1–16 (2019). https://doi.org/10.1007/s10898-019-00814-w