Skip to main content

Opportunity for Video-on-Demand Services – Collecting Consumer’s Neurophysiology Data for Recommendation Systems Improvement

  • 472 Accesses

Part of the Lecture Notes in Business Information Processing book series (LNBIP,volume 395)

Abstract

In the last few decades, the way that consumers watch video content has changed. Video-on-demand services usage has been raised, and this enables some new opportunity to improve video content recommendation systems of those services. New video-on-demand services usually use the Internet as a broadcast infrastructure so the Internet can be used for feedback sending. Feedback can be divided into two groups: based on conscious choices generated by the consumer or based on consumer’s neurophysiological data. In this paper, the second option is analyzed, and the focus is on gender differences. Participants have watched four movie trailers, and different neurophysiology data have been recorded while they have been watching the trailers. During that time, they have been rating trailers. Heart rate and galvanic skin response have been extracted and analyzed in different ways. A weak correlation between trailers scores and standard deviation of heart rate was detected. Still, on the other hand, a statistically significant difference in the numbers of detected skin conductance responses between the genders was measured from the sample. This knowledge could be implemented in the rating systems for further improvement. Also, the use of consumer’s neurophysiological data in the video-on-demand services rating systems should be further investigated.

Keywords

  • Video-on-demand services
  • EDA
  • GSR
  • Heart rate
  • Neurophysiology data
  • Recommendation systems

This is a preview of subscription content, access via your institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • DOI: 10.1007/978-3-030-64642-4_8
  • Chapter length: 14 pages
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
eBook
USD   59.99
Price excludes VAT (USA)
  • ISBN: 978-3-030-64642-4
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
Softcover Book
USD   74.99
Price excludes VAT (USA)
Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.

References

  1. Ricci, F., Rokach, L., Shapira, B.: Introduction to recommender systems handbook. In: Ricci, F., Rokach, L., Shapira, B., Kantor, P. (eds.) Recommender Systems Handbook, pp. 1–35. Springer, Boston (2011). https://doi.org/10.1007/978-0-387-85820-3_1

    CrossRef  MATH  Google Scholar 

  2. Burke, R.: Hybrid recommender systems: survey and experiments. User Model. User-Adap. Inter. 12, 331–370 (2002)

    CrossRef  Google Scholar 

  3. Burke, R.: Hybrid web recommender systems. In: Brusilovsky, P., Kobsa, A., Nejdl, W. (eds.) The Adaptive Web, pp. 377–408. Springer, Heidelberg (2007). https://doi.org/10.1007/978-3-540-72079-9_12

    CrossRef  Google Scholar 

  4. Soares, M., Viana, P.: TV recommendation and personalization systems: integrating broadcast and video on-demand services. Adv. Electr. Comput. Eng. 14, 115–120 (2014)

    CrossRef  Google Scholar 

  5. Peleja, F., Dias, P., Martins, F., Magalhães, J.: A recommender system for the TV on the web: integrating unrated reviews and movie ratings. Multimedia Syst. 19(6), 543–558 (2013). https://doi.org/10.1007/s00530-013-0310-8

    CrossRef  Google Scholar 

  6. Gupta, S., Moharir, S.: Modeling request patterns in VoD services with recommendation systems. In: International Conference on Communication Systems and Networks (2017)

    Google Scholar 

  7. Gupta, S., Moharir, S.: Request patterns and caching for VoD services with recommendation systems. In: 2017 9th International Conference on Communication Systems and Networks (COMSNETS) (2017)

    Google Scholar 

  8. Verhoeyen, M., De Vriendt, J., De Vleeschauwer, D.: Optimizing for video storage networking with recommender systems. Bell Labs Tech. J. 16, 97–113 (2012)

    CrossRef  Google Scholar 

  9. Guntuku, S.C., Roy, S., Lin, W., Ng, K., Keong, N.W., Jakhetiya, V.: Personalizing user interfaces for improving quality of experience in VoD recommender systems. In: 2016 Eighth International Conference on Quality of Multimedia Experience (QoMEX) (2016)

    Google Scholar 

  10. Mo, Y., Chen, J., Xie, X., Luo, C., Yang, L.T.: Cloud-based mobile multimedia recommendation system with user behavior information. IEEE Syst. J. 8, 184–193 (2014)

    CrossRef  Google Scholar 

  11. Tsunoda, T., Hoshino, M.: Automatic metadata expansion and indirect collaborative filtering for TV program recommendation system. Multimedia Tools Appl. 36, 37–54 (2008)

    CrossRef  Google Scholar 

  12. Boucsein, W.: Electrodermal Activity. Springer, Heidelberg (2012). https://doi.org/10.1007/978-1-4614-1126-0

    CrossRef  Google Scholar 

  13. Coombs, C.H.: Mathematical biophysics of the galvanic skin response. Bull. Math. Biophys. 3, 97–103 (1941)

    CrossRef  Google Scholar 

  14. Martini, F., et al.: Fundamentals of Anatomy & Physiology, vol. 7. Pearson Benjamin Cummings, San Francisco (2006)

    Google Scholar 

  15. Healey, J.A.: Wearable and automotive systems for affect recognition from physiology (2000)

    Google Scholar 

  16. Huysmans, D., et al.: Unsupervised learning for mental stress detection-exploration of self-organizing maps. In: Proceedings of Biosignals 2018, vol. 4, pp. 26–35 (2018)

    Google Scholar 

  17. Ollander, S., Godin, C., Campagne, A., Charbonnier, S.: A comparison of wearable and stationary sensors for stress detection. In: 2016 IEEE International Conference on Systems, Man, and Cybernetics (SMC) (2016)

    Google Scholar 

  18. Smets, E., et al.: Comparison of machine learning techniques for psychophysiological stress detection. In: International Symposium on Pervasive Computing Paradigms for Mental Health (2015)

    Google Scholar 

  19. Chanel, G., Rebetez, C., Bétrancourt, M., Pun, T.: Boredom, engagement and anxiety as indicators for adaptation to difficulty in games. In: Proceedings of the 12th International Conference on Entertainment and Media in the Ubiquitous Era (2008)

    Google Scholar 

  20. Money, A.G., Agius, H.: Analysing user physiological responses for affective video summarisation. Displays 30, 59–70 (2009)

    CrossRef  Google Scholar 

  21. Soleymani, M., Chanel, G., Kierkels, J.J.M., Pun, T.: Affective ranking of movie scenes using physiological signals and content analysis. In: Proceedings of the 2nd ACM Workshop on Multimedia Semantics (2008)

    Google Scholar 

  22. Ali, M., Machot, F.A., Mosa, A.H., Kyamakya, K.: CNN based subject-independent driver emotion recognition system involving physiological signals for ADAS. In: Schulze, T., Müller, B., Meyer, G. (eds.) Advanced Microsystems for Automotive Applications 2016. LNM, pp. 125–138. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-44766-7_11

    CrossRef  Google Scholar 

  23. Pandey, A.K.T., et al.: Empirical evaluation of machine learning algorithms based on EMG, ECG and GSR data to classify emotional states (2013)

    Google Scholar 

  24. Bradley, M.M., Lang, P.J.: Measuring emotion: behavior, feeling, and physiology. Cogn. Neurosci. Emot. 25, 49–59 (2000)

    Google Scholar 

  25. Lisetti, C.L., Nasoz, F.: Using noninvasive wearable computers to recognize human emotions from physiological signals. EURASIP J. Adv. Sig. Process. 2004, 929414 (2004)

    CrossRef  Google Scholar 

  26. Santos Sierra, A., Ávila, C.S., Casanova, J.G., Pozo, G.B.: A stress-detection system based on physiological signals and fuzzy logic. IEEE Trans. Ind. Electron. 58, 4857–4865 (2011)

    Google Scholar 

  27. Shalini, T.B., Vanitha, L.: Emotion detection in human beings using ECG signals. Int. J. Eng. Trends Technol. (IJETT) 4, 3113–3120 (2013)

    Google Scholar 

  28. Tan, S., Guo, A., Ma, J., Ren, S.: Personal affective trait computing using multiple data sources. In: 2019 International Conference on Internet of Things (iThings) and IEEE Green Computing and Communications (GreenCom) and IEEE Cyber, Physical and Social Computing (CPSCom) and IEEE Smart Data (SmartData) (2019)

    Google Scholar 

  29. Berntson, G.G., et al.: Heart rate variability: origins, methods, and interpretive caveats. Psychophysiology 34, 623–648 (1997)

    Google Scholar 

  30. Albraikan, A., Tobón, D.P., El Saddik, A.: Toward user-independent emotion recognition using physiological signals. IEEE Sens. J. 19, 8402–8412 (2018)

    CrossRef  Google Scholar 

  31. Can, Y.S., Arnrich, B., Ersoy, C.: Stress detection in daily life scenarios using smart phones and wearable sensors: a survey. J. Biomed. Inform. 103139 (2019)

    Google Scholar 

  32. Greene, S., Thapliyal, H., Caban-Holt, A.: A survey of affective computing for stress detection: evaluating technologies in stress detection for better health. IEEE Consum. Electron. Mag. 5, 44–56 (2016)

    CrossRef  Google Scholar 

  33. Wampfler, R., Klingler, S., Solenthaler, B., Schinazi, V., Gross, M.: Affective state prediction in a mobile setting using wearable biometric sensors and stylus. In: Proceedings of the 12th International Conference on Educational Data Mining (EDM 2019) (2019)

    Google Scholar 

  34. Bach, D.R.: A head-to-head comparison of SCRalyze and Ledalab, two model-based methods for skin conductance analysis. Biol. Psychol. 103, 63–68 (2014)

    CrossRef  Google Scholar 

  35. Furuichi, K., Worsley, M.: Using physiological responses to capture unique idea creation in team collaborations. In: Companion of the 2018 ACM Conference on Computer Supported Cooperative Work and Social Computing (2018)

    Google Scholar 

  36. Kelsey, M.: Applications of sparse recovery and dictionary learning towards analysis of electrodermal activity (2017)

    Google Scholar 

  37. Reutermann, J.E., Traupe, O., Hedderich, J., Kaernbach, C., Stephani, U.: Sympathetic activity of PPR-positive adolescents: clinical study. Neuropediatrics 47, P07–P18 (2016)

    Google Scholar 

  38. Benedek, M., Kaernbach, C.: Decomposition of skin conductance data by means of nonnegative deconvolution. Psychophysiology 47, 647–658 (2010b)

    Google Scholar 

  39. Schwarz, G., et al.: Estimating the dimension of a model. Ann. Stat. 6, 461–464 (1978)

    Google Scholar 

  40. Deng, Y., Chang, L., Yang, M., Huo, M., Zhou, R.: Gender differences in emotional response: inconsistency between experience and expressivity. PloS ONE 11 (2016)

    Google Scholar 

  41. Rohrmann, S., Hopp, H., Quirin, M.: Gender differences in psychophysiological responses to disgust. J. Psychophysiol. 22, 65–75 (2008)

    CrossRef  Google Scholar 

  42. Alexander, M.G., Wood, W.: Women, men, and positive emotions: a social role interpretation. In: Gender and Emotion: Social Psychological Perspectives, pp. 189–210 (2000)

    Google Scholar 

  43. Singh, S.: Video on Demand (VoD) Market worth $87.1 billion by 2024, January 2020. https://www.marketsandmarkets.com/PressReleases/audio-video-on-demand-avod.asp. Accessed Feb 2020

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kristian Dokic .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and Permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this paper

Verify currency and authenticity via CrossMark

Cite this paper

Dokic, K., Lauc, T. (2020). Opportunity for Video-on-Demand Services – Collecting Consumer’s Neurophysiology Data for Recommendation Systems Improvement. In: Bach Tobji, M.A., Jallouli, R., Samet, A., Touzani, M., Strat, V.A., Pocatilu, P. (eds) Digital Economy. Emerging Technologies and Business Innovation. ICDEc 2020. Lecture Notes in Business Information Processing, vol 395. Springer, Cham. https://doi.org/10.1007/978-3-030-64642-4_8

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-64642-4_8

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-64641-7

  • Online ISBN: 978-3-030-64642-4

  • eBook Packages: Computer ScienceComputer Science (R0)