Skip to main content

Multi-microgrids with a Frequency Regulation-Based V2G Technology: Systems Analysis, Modeling, and Control

  • Chapter
  • First Online:
Design, Control, and Operation of Microgrids in Smart Grids

Part of the book series: Power Systems ((POWSYS))

  • 650 Accesses

Abstract

This chapter presents novel structured single-input interval type-2 fuzzy logic controllers (SI-IT2-FLCs) for the frequency damping of multi-microgrids (MMGs), whereas the application of electric vehicles (EVs) is considered in this context. For this purpose, a new SI-IT2-fuzzy PD/fuzzy PI (SI-IT2-FPD/FPI) controller is designed on two levels. Initially, an improved whale optimization algorithm, called IWOA, is adopted to adjust the setting of the gains embedded in the FPD/FPI section effectively. Then, the impact of the footprint of uncertainty (FOU), to offer extra design freedom, on control surface generation of SI-IT2-FLC has been investigated. In this way, various control surfaces were generated by varying a single coefficient which forms the FOU. Lastly, by adopting hardware-in-the-loop (HIL) simulator, the feasibility and usefulness of the suggested framework are verified from a real-time perspective.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 119.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 159.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 159.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. M. Gheisarnejad, M.-H. Khooban, T. Dragičevié, The future 5G network-based secondary load frequency control in shipboard microgrids. IEEE J. Emerg. Select. Topics Power Electr. 8, 836–844 (2019)

    Article  Google Scholar 

  2. I. Pan, S. Das, Fractional order AGC for distributed energy resources using robust optimization. IEEE Trans. Smart Grid 7, 2175–2186 (2015)

    Article  Google Scholar 

  3. M. Gheisarnejad, M.H. Khooban, Secondary load frequency control for multi-microgrids: HiL real-time simulation. Soft. Comput. 23, 5785–5798 (2019)

    Article  Google Scholar 

  4. M.H. Khooban, M. Gheisarnejad, A novel deep reinforcement learning controller based type-II fuzzy system: Frequency regulation in microgrids. IEEE Trans. Emerg. Topics Comput. Intel. (2020)

    Google Scholar 

  5. M.-R. Chen, G.-Q. Zeng, Y.-X. Dai, K.-D. Lu, D.-Q. Bi, Fractional-Order model predictive frequency control of an islanded microgrid. Energies, 12, 84, (2019)

    Google Scholar 

  6. M.H. Khooban, M. Gheisarnejad, Islanded microgrid frequency regulations concerning the integration of tidal power units: Real-time implementation. IEEE Trans. Circuit Syst. II Express Briefs 67, 1099–1103 (2019)

    Article  Google Scholar 

  7. M. Gheisarnejad, P. Karimaghaee, J. Boudjadar, M.-H. Khooban, Real-time cellular wireless sensor testbed for frequency regulation in smart grids. IEEE Sensors J. 19, 11656–11665 (2019)

    Article  Google Scholar 

  8. I. Pan, S. Das, Fractional order fuzzy control of hybrid power system with renewable generation using chaotic PSO. ISA Trans. 62, 19–29 (2016)

    Article  Google Scholar 

  9. K.S. Rajesh, S.S. Dash, Load frequency control of autonomous power system using adaptive fuzzy based PID controller optimized on improved sine cosine algorithm. J. Ambient. Intell. Humaniz. Comput. 10, 2361–2373 (2019)

    Article  Google Scholar 

  10. M.H. Fini, M.E.H. Golshan, Determining optimal virtual inertia and frequency control parameters to preserve the frequency stability in islanded microgrids with high penetration of renewables. Electr. Power Syst. Res. 154, 13–22 (2018)

    Article  Google Scholar 

  11. H. Wang, G. Zeng, Y. Dai, D. Bi, J. Sun, X. Xie, Design of a fractional order frequency PID controller for an islanded microgrid: A multi-objective extremal optimization method. Energies 10, 1502 (2017)

    Article  Google Scholar 

  12. M.H. Khooban, T. Niknam, M. Sha-Sadeghi, Speed control of electrical vehicles: A time-varying proportional–integral controller-based type-2 fuzzy logic. IET Sci. Measur. Technol. 10, 185–192 (2016)

    Article  Google Scholar 

  13. M. Rahmani-Andebili, M. Bonamente, J.A. Miller, Charging management of plug-in electric vehicles in San Francisco applying Monte Carlo Markov chain and stochastic model predictive control and considering renewables and drag force. IET Gener. Trans. Distrib. (2020)

    Google Scholar 

  14. M. Rahmani-Andebili, M. Fotuhi-Firuzabad, An adaptive approach for PEVs charging management and reconfiguration of electrical distribution system penetrated by renewables. IEEE Trans. Ind. Inf. 14, 2001–2010 (2017)

    Article  Google Scholar 

  15. M. Rahmani-Andebili, Studying the effects of plug-in electric vehicles on the real power markets demand considering the technical and social aspects, in Planning and Operation of Plug-In Electric Vehicles (Springer, 2019), pp. 1–21

    Google Scholar 

  16. M.-H. Khooban, M. Gheisarnejad, N. Vafamand, J. Boudjadar, Electric vehicle power propulsion system control based on time-varying fractional calculus: Implementation and experimental results. IEEE Trans. Intel. Vehic. 4, 255–264 (2019)

    Article  Google Scholar 

  17. M. Rahmani-Andebili, Spinning reserve capacity provision by the optimal fleet management of plug-in electric vehicles considering the technical and social aspects, in Planning and Operation of Plug-In Electric Vehicles (Springer, 2019), pp. 49–74

    Google Scholar 

  18. S. Falahati, S. A. Taher, M. Shahidehpour, Grid secondary frequency control by optimized fuzzy control of electric vehicles. IEEE Trans. Smart Grid (2017)

    Google Scholar 

  19. T. Goya, E. Omine, Y. Kinjyo, T. Senjyu, A. Yona, N. Urasaki, et al., Frequency control in isolated island by using parallel operated battery systems applying H∞ control theory based on droop characteristics. IET Renew. Power Gener. 5, 160–166 (2011)

    Article  Google Scholar 

  20. J. Yang, Z. Zeng, Y. Tang, J. Yan, H. He, Y. Wu, Load frequency control in isolated micro-grids with electrical vehicles based on multivariable generalized predictive theory. Energies 8, 2145–2164 (2015)

    Article  Google Scholar 

  21. S. Kayalvizhi, D.M.V. Kumar, Load frequency control of an isolated micro grid using fuzzy adaptive model predictive control. IEEE Access 5, 16241–16251 (2017)

    Article  Google Scholar 

  22. H. Bevrani, F. Habibi, P. Babahajyani, M. Watanabe, Y. Mitani, Intelligent frequency control in an AC microgrid: Online PSO-based fuzzy tuning approach. IEEE Trans. Smart Grid 3, 1935–1944 (2012)

    Article  Google Scholar 

  23. M.-H. Khooban, T. Niknam, M. Shasadeghi, T. Dragicevic, F. Blaabjerg, Load frequency control in microgrids based on a stochastic noninteger controller. IEEE Trans. Sustain. Energy 9, 853–861 (2018)

    Article  Google Scholar 

  24. K. Nosrati, H.R. Mansouri, H. Saboori, Fractional-order PID controller design of frequency deviation in a hybrid renewable energy generation and storage system. CIRED-Open Access Proc. J. 2017, 1148–1152 (2017)

    Article  Google Scholar 

  25. M.-H. Khooban, Secondary load frequency control of time-delay stand-alone microgrids with electric vehicles. IEEE Trans. Ind. Electron. 65, 7416–7422 (2018)

    Article  Google Scholar 

  26. J. Pahasa, I. Ngamroo, Coordinated control of wind turbine blade pitch angle and PHEVs using MPCs for load frequency control of microgrid. IEEE Syst. J. 10, 97–105 (2016)

    Article  Google Scholar 

  27. M. Datta, T. Senjyu, Fuzzy control of distributed PV inverters/energy storage systems/electric vehicles for frequency regulation in a large power system. IEEE Trans. Smart Grid 4, 479–488 (2013)

    Article  Google Scholar 

  28. M. Rahmani-Andebili, Studying the effects of optimal fleet management of plug-in electric vehicles on the unit commitment problem considering the technical and social aspects, in Planning and Operation of Plug-In Electric Vehicles (Springer, 2019), pp. 23–47

    Google Scholar 

  29. A.A. El-Fergany, M.A. El-Hameed, Efficient frequency controllers for autonomous two-area hybrid microgrid system using social-spider optimiser. IET Gener. Transm. Distrib. 11, 637–648 (2017)

    Article  Google Scholar 

  30. S.K. Pandey, S.R. Mohanty, N. Kishor, J.P.S. Catalão, Frequency regulation in hybrid power systems using particle swarm optimization and linear matrix inequalities based robust controller design. Int. J. Electr. Power Energy Syst. 63, 887–900 (2014)

    Article  Google Scholar 

  31. M.-H. Khooban, T. Niknam, F. Blaabjerg, P. Davari, T. Dragicevic, A robust adaptive load frequency control for micro-grids. ISA Trans. 65, 220–229 (2016)

    Article  Google Scholar 

  32. M.H. Khooban, T. Niknam, F. Blaabjerg, T. Dragičević, A new load frequency control strategy for micro-grids with considering electrical vehicles. Electr. Power Syst. Res. 143, 585–598 (2017)

    Article  Google Scholar 

  33. H. Bevrani, M.R. Feizi, S. Ataee, Robust frequency control in an islanded microgrid: Hinf and μ-synthesis approaches. IEEE Trans. Smart Grid 7, 706–717 (2016)

    Google Scholar 

  34. K.S. Rajesh, S.S. Dash, Load frequency control of autonomous power system using adaptive fuzzy based PID controller optimized on improved sine cosine algorithm. J. Ambient. Intell. Humaniz. Comput., 1–13 (2018)

    Google Scholar 

  35. A. Sarabakha, C. Fu, E. Kayacan, T. Kumbasar, Type-2 fuzzy logic controllers made even simpler: From design to deployment for UAVs. IEEE Trans. Ind. Electron. 65, 5069–5077 (2018)

    Article  Google Scholar 

  36. R. Heydari, M. Gheisarnejad, M.H. Khooban, T. Dragicevic, F. Blaabjerg, Robust and fast voltage-source-converter (VSC) control for naval shipboard microgrids. IEEE Trans. Power Electron. 34, 8299–8303 (2019)

    Article  Google Scholar 

  37. M. Gheisarnejad, J. Boudjadar, M.-H. Khooban, A new adaptive type-II fuzzy-based deep reinforcement learning control: Fuel cell air-feed sensors control. IEEE Sensors J. 19, 9081–9089 (2019)

    Article  Google Scholar 

  38. M. Gheisarnejad, H. Mohammadi-Moghadam, J. Boudjadar, M.H. Khooban, Active power sharing and frequency recovery control in an islanded microgrid with nonlinear load and nondispatchable DG. IEEE Syst. J. 14, 1058–1068 (2019)

    Article  Google Scholar 

  39. A. Sarabakha, C. Fu, E. Kayacan, T. Kumbasar, Type-2 fuzzy logic controllers made even simpler: From design to deployment for UAVs. IEEE Trans. Ind. Electron. 65, 5069–5077 (2017)

    Article  Google Scholar 

  40. T. Kumbasar, Robust stability analysis and systematic design of single-input interval type-2 fuzzy logic controllers. IEEE Trans. Fuzzy Syst. 24, 675–694 (2016)

    Article  Google Scholar 

  41. M. Mehndiratta, E. Kayacan, T. Kumbasar, Design and experimental validation of single input type-2 fuzzy PID controllers as applied to 3 DOF helicopter testbed, in 2016 IEEE International Conference on Fuzzy Systems (FUZZ-IEEE), 2016, pp. 1584–1591

    Google Scholar 

  42. T. Kumbasar, H. Hagras, A gradient descent based online tuning mechanism for PI type single input interval type-2 fuzzy logic controllers, 1–6

    Google Scholar 

  43. S. Mirjalili, A. Lewis, The whale optimization algorithm. Adv. Eng. Softw. 95, 51–67 (2016)

    Article  Google Scholar 

  44. M. Gheisarnejad, P. Karimaghaee, J. Boudjadar, M.-H. Khooban, Real-time cellular wireless sensor testbed for frequency regulation in smart grids. IEEE Sensors J. (2019)

    Google Scholar 

  45. G.-Q. Zeng, J. Chen, L.-M. Li, M.-R. Chen, L. Wu, Y.-X. Dai, et al., An improved multi-objective population-based extremal optimization algorithm with polynomial mutation. Inf. Sci. 330, 49–73 (2016)

    Article  Google Scholar 

  46. Z. Seif, M.B. Ahmadi, An opposition-based algorithm for function optimization. Eng. Appl. Artif. Intell. 37, 293–306 (2015)

    Article  Google Scholar 

  47. I. Pan, S. Das, Kriging based surrogate modeling for fractional order control of microgrids. IEEE Trans. Smart Grid 6, 36–44 (2015)

    Article  Google Scholar 

  48. M.-H. Khooban, T. Dragicevic, F. Blaabjerg, M. Delimar, Shipboard microgrids: A novel approach to load frequency control. IEEE Trans. Sustain. Energy 9, 843–852 (2018)

    Article  Google Scholar 

  49. V. Kumar, K.P.S. Rana, P. Mishra, Robust speed control of hybrid electric vehicle using fractional order fuzzy PD and PI controllers in cascade control loop. J. Franklin Inst. 353, 1713–1741 (2016)

    Article  MathSciNet  Google Scholar 

  50. H. Zhang, Y. Zhang, C. Yin, Hardware-in-the-loop simulation of robust mode transition control for a series–parallel hybrid electric vehicle. IEEE Trans. Veh. Technol. 65, 1059–1069 (2016)

    Article  Google Scholar 

  51. www.winddata.com. [Online; accessed 10.10.14]

  52. www.solargis.info/doc/solar-and-pv-data. [Online;accessed 10.10.14]

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mohammad-Hassan Khooban .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Gheisarnejad, M., Khooban, MH. (2021). Multi-microgrids with a Frequency Regulation-Based V2G Technology: Systems Analysis, Modeling, and Control. In: Rahmani-Andebili, M. (eds) Design, Control, and Operation of Microgrids in Smart Grids. Power Systems. Springer, Cham. https://doi.org/10.1007/978-3-030-64631-8_1

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-64631-8_1

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-64630-1

  • Online ISBN: 978-3-030-64631-8

  • eBook Packages: EnergyEnergy (R0)

Publish with us

Policies and ethics