Skip to main content

Evaluation and Assessment of Smart Grid Reliability Using Fuzzy Multi-criteria Decision-Making

  • Chapter
  • First Online:
Applications of Fuzzy Logic in Planning and Operation of Smart Grids

Part of the book series: Power Systems ((POWSYS))

Abstract

Smart grid is a new paradigm that integrates traditional electricity grid and communication networks. Reliability is a critical challenge associated with smart grid and needs to be addressed. Based on comprehensive literature review and experts’ judgments, we develop a model to identify the most important criteria that have an impact on smart grid reliability from the perspective of users. The model takes into account three main criteria: “Big Data Management,” “Communication System,” and “System Functionality.” The fuzzy analytic hierarchy process is applied to analyze and prioritize these criteria based on the triangular fuzzy numbers and triangular membership function.

The results show that the “Big Data Management” main criterion has a significant impact on smart grid reliability, followed by “Communication System.” Furthermore, “Data Analytics” and “Data Visualization” were ranked as the most influential sub-criteria that influence smart grid reliability. Four various sensitivity analysis strategies have been applied to investigate the stability and robustness of results. This chapter provides meaningful implications and future research directions that are useful for many practitioners, engineers, academicians, and electricity policy makers to focus their efforts on smart grid reliability.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 109.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 139.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 139.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. L. Atzori, A. Iera, G. Morabito, The Internet of Things: A survey. Comput. Netw. 54, 2787–2805. 2010/10/28/ (2010)

    Article  MATH  Google Scholar 

  2. I. Mashal, O. Alsaryrah, T.-Y. Chung, C.-Z. Yang, W.-H. Kuo, D.P. Agrawal, Choices for interaction with things on Internet and underlying issues. Ad Hoc Netw. 28(5), 68–90 (2015)

    Article  Google Scholar 

  3. Z.M. Fadlullah, M.M. Fouda, N. Kato, A. Takeuchi, N. Iwasaki, Y. Nozaki, Toward intelligent machine-to-machine communications in smart grid. IEEE Commun. Mag. 49, 60–65 (2011)

    Article  Google Scholar 

  4. D. Niyato, L. Xiao, P. Wang, Machine-to-machine communications for home energy management system in smart grid. IEEE Commun. Mag. 49, 53–59 (2011)

    Article  Google Scholar 

  5. A. Ghasempour, Internet of things in smart grid: Architecture, applications, services, key technologies, and challenges. Inventions 4, 22 (2019)

    Article  Google Scholar 

  6. K. Moslehi, R. Kumar, Smart grid – A reliability perspective, in 2010 Innovative Smart Grid Technologies (ISGT) (2010), pp. 1–8

    Google Scholar 

  7. M. Ourahou, W. Ayrir, B. El Hassouni, A. Haddi, Review on smart grid control and reliability in presence of renewable energies: Challenges and prospects. Math. Comput. Simul. 167, 19–31. 2020/01/01/ (2020)

    Article  MathSciNet  MATH  Google Scholar 

  8. S.R. Shady, A.-R. Haitham, Smart grid condition assessment: Concepts, benefits, and developments. Power Electron. Drive 1, 147–163. 2016/01/12 (2016)

    Google Scholar 

  9. X. Fang, S. Misra, G. Xue, D. Yang, Smart grid – The new and improved power grid: A survey. IEEE Commun. Surv. Tutor. 14, 944–980 (2012)

    Article  Google Scholar 

  10. M.R. Hossain, A.M.T. Oo, A.B.M.S. Ali, Smart grid, in Smart Grids: Opportunities, Developments, and Trends, ed. by A. B. M. S. Ali, (Springer, London, 2013), pp. 23–44

    Chapter  Google Scholar 

  11. P. Ponce, K. Polasko, A. Molina, End user perceptions toward smart grid technology: Acceptance, adoption, risks, and trust. Renew. Sust. Energ. Rev. 60, 587–598. 2016/07/01/ (2016)

    Article  Google Scholar 

  12. M. Hashmi, S. Hänninen, K. Mäki, Survey of smart grid concepts, architectures, and technological demonstrations worldwide, in 2011 IEEE PES Conference on Innovative Smart Grid Technologies Latin America (ISGT LA) (2011), pp. 1–7

    Google Scholar 

  13. J.-S. Chou, I. Gusti Ayu Novi Yutami, Smart meter adoption and deployment strategy for residential buildings in Indonesia. Appl. Energy 128, 336–349. 2014/09/01/ (2014)

    Article  Google Scholar 

  14. M. Broman Toft, G. Schuitema, J. Thøgersen, The importance of framing for consumer acceptance of the smart grid: A comparative study of Denmark, Norway and Switzerland. Energy Res. Soc. Sci. 3, 113–123. 2014/09/01/ (2014)

    Article  Google Scholar 

  15. I. Mashal, O. Alsaryrah, T.-Y. Chung, F.-C. Yuan, A multi-criteria analysis for an internet of things application recommendation system. Technol. Soc. 60, 101216. 2020/02/01/ (2020)

    Article  Google Scholar 

  16. S. Kahrobaee, S. Asgarpoor, Reliability assessment for smart grid and future power distribution systems, in 2015 IEEE Conference on Technologies for Sustainability (SusTech) (2015), pp. 160–164

    Google Scholar 

  17. I. Mashal, O. Alsaryrah, Fuzzy analytic hierarchy process model for multi-criteria analysis of internet of things. Kybernetes 49, 2509–2520 (2019)

    Article  Google Scholar 

  18. A. Shuhaiber, I. Mashal, Understanding users’ acceptance of smart homes. Technol. Soc. 58, 101110. 2019/08/01/ (2019)

    Article  Google Scholar 

  19. I. Mashal, A. Shuhaiber, M. Daoud, Factors influencing the acceptance of smart homes in Jordan. Int. J. Electron. Market. Retail. 11, 113–142 (2020)

    Article  Google Scholar 

  20. A. Shuhaiber, I. Mashal, O. Alsaryrah, The role of smart homes’ attributes on users’ acceptance, in 2019 International Conference on Electrical and Computing Technologies and Applications (ICECTA) (2019), pp. 1–4

    Google Scholar 

  21. A. Shuhaiber, I. Mashal, O. Alsaryrah, Smart homes as an IoT application: Predicting attitudes and behaviours, in 2019 IEEE/ACS 16th International Conference on Computer Systems and Applications (AICCSA) (2019), pp. 1–7

    Google Scholar 

  22. I. Mashal, A. Shuhaiber, What makes Jordanian residents buy smart home devices? A factorial investigation using PLS-SEM. Kybernetes 48, 1681–1698 (2019)

    Article  Google Scholar 

  23. G. Dileep, A survey on smart grid technologies and applications. Renew. Energy 146, 2589–2625. 2020/02/01/ (2020)

    Article  Google Scholar 

  24. U. Department of Energy, 2010 Smart Grid System Report (US Department of Energy, Washington, DC, 2009)

    Google Scholar 

  25. Y. Bamberger, J. Baptista, R. Belmans, B.M. Buchholz, M. Chebbo, J.L.D.V. Doblado, et al., Vision and Strategy for Europe’s Electricity Networks of the Future: European Technology PlatformSmartGrids (2006)

    Google Scholar 

  26. N. Good, K.A. Ellis, P. Mancarella, Review and classification of barriers and enablers of demand response in the smart grid. Renew. Sust. Energ. Rev. 72, 57–72. 2017/05/01/ (2017)

    Article  Google Scholar 

  27. M. Rahmani-andebili, Modeling nonlinear incentive-based and price-based demand response programs and implementing on real power markets. Electr. Power Syst. Res. 132, 115–124. 2016/03/01/ (2016)

    Article  Google Scholar 

  28. M. Rahmani-Andebili, M. Bonamente, J.A. Miller, Charging management of plug-in electric vehicles in San Francisco applying Monte Carlo Markov chain and stochastic model predictive control and considering renewables and drag force. IET Gener. Transm. Distrib. (2020). Available: https://digital-library.theiet.org/content/journals/10.1049/iet-gtd.2020.1106

  29. M. Rahmani-Andebili, Robust operation of a reconfigurable electrical distribution system by optimal charging management of plug-in electric vehicles considering the technical, social, and geographical aspects, in Planning and Operation of Plug-In Electric Vehicles: Technical, Geographical, and Social Aspects, ed. by M. Rahmani-Andebili, (Springer, Cham, 2019), pp. 75–104

    Chapter  Google Scholar 

  30. M. Rahmani-Andebili, M. Fotuhi-Firuzabad, An adaptive approach for PEVs charging management and reconfiguration of electrical distribution system penetrated by renewables. IEEE Trans. Ind. Inf. 14, 2001–2010 (2018)

    Article  Google Scholar 

  31. M. Rahmani-Andebili, Studying the effects of plug-in electric vehicles on the real power markets demand considering the technical and social aspects, in Planning and Operation of Plug-In Electric Vehicles: Technical, Geographical, and Social Aspects, ed. by M. Rahmani-Andebili, (Springer, Cham, 2019), pp. 1–21

    Chapter  Google Scholar 

  32. M.H. Rehmani, M. Reisslein, A. Rachedi, M. Erol-Kantarci, M. Radenkovic, Integrating renewable energy resources into the smart grid: Recent developments in information and communication technologies. IEEE Trans. Ind. Inf. 14, 2814–2825 (2018)

    Article  Google Scholar 

  33. R. Bayindir, I. Colak, G. Fulli, K. Demirtas, Smart grid technologies and applications. Renew. Sust. Energ. Rev. 66, 499–516. 2016/12/01/ (2016)

    Article  Google Scholar 

  34. B. Heile, Smart grids for green communications [Industry Perspectives]. IEEE Wirel. Commun. 17, 4–6 (2010)

    Article  Google Scholar 

  35. M. Kuzlu, M. Pipattanasomporn, Assessment of communication technologies and network requirements for different smart grid applications, in 2013 IEEE PES Innovative Smart Grid Technologies Conference (ISGT) (2013), pp. 1–6

    Google Scholar 

  36. B. Haddad, A. Liazid, P. Ferreira, A multi-criteria approach to rank renewables for the Algerian electricity system. Renew. Energy 107, 462–472. 2017/07/01/ (2017)

    Article  Google Scholar 

  37. S. Vashishtha, M. Ramachandran, Multicriteria evaluation of demand side management (DSM) implementation strategies in the Indian power sector. Energy 31, 2210–2225. 2006/09/01/ (2006)

    Article  Google Scholar 

  38. S.-K. Yi, H.-Y. Sin, E. Heo, Selecting sustainable renewable energy source for energy assistance to North Korea. Renew. Sust. Energ. Rev. 15, 554–563. 2011/01/01/ (2011)

    Article  Google Scholar 

  39. J. Li, T. Li, L. Han, Research on the evaluation model of a smart grid development level based on differentiation of development demand. Sustainability 10, 4047 (2018)

    Article  Google Scholar 

  40. X. Chuansheng, D. Dapeng, H. Shengping, X. Xin, C. Yingjie, Safety evaluation of smart grid based on AHP-entropy method. Syst. Eng. Proc. 4, 203–209. 2012/01/01/ (2012)

    Article  Google Scholar 

  41. J. Zhang, Z. Sang, Y. Cai, Y. Wang, Y. Shen, Y. Chen, Research on smart grid evaluation index system based on the analytic hierarchy process, in 2018 IEEE 2nd International Electrical and Energy Conference (CIEEC) (2018), pp. 463–468

    Google Scholar 

  42. T.A. Alaqeel, S. Suryanarayanan, A fuzzy analytic hierarchy process algorithm to prioritize smart grid technologies for the Saudi electricity infrastructure. Sustain. Energy Grids Netw. 13, 122–133. 2018/03/01/ (2018)

    Article  Google Scholar 

  43. A. Janjić, M. Stanković, L. Velimirović, Smart grid strategy assessment using the fuzzy AHP, in U: 6th ICT Conference, Niš (2014), pp. 13–18

    Google Scholar 

  44. A. Janjic, S. Savic, L. Velimirovic, V. Nikolic, Renewable energy integration in smart grids-multicriteria assessment using the fuzzy analytical hierarchy process. Turk. J. Electr. Eng. Comput. Sci. 23, 1896–1912 (2015)

    Article  Google Scholar 

  45. G. van de Kaa, J. Rezaei, L. Kamp, A. de Winter, Photovoltaic technology selection: A fuzzy MCDM approach. Renew. Sust. Energ. Rev. 32, 662–670. 2014/04/01/ (2014)

    Article  Google Scholar 

  46. H. Yong-Gui, L. Yan, Evaluation of power demand-side management factors in the new electric power system reform based on FAHP, in 2016 5th International Conference on Energy and Environmental Protection (ICEEP 2016) (2016), pp. 229–233

    Google Scholar 

  47. M.M. Montazeri, M. Najjartabar-Bisheh, Optimizing technology selection for power smart grid systems: A case study of Iran Power Distribution Industry (IPDI). Technol. Econ. Smart Grids Sustain. Energy 2, 6. 2017/03/30 (2017)

    Article  Google Scholar 

  48. O.A. Sianaki, M.A.S. Masoum, A fuzzy TOPSIS approach for home energy management in smart grid with considering householders’ preferences, in 2013 IEEE PES Innovative Smart Grid Technologies Conference (ISGT) (2013), pp. 1–6

    Google Scholar 

  49. J.R. San Cristóbal, Multi-criteria decision-making in the selection of a renewable energy project in Spain: The Vikor method. Renew. Energy 36, 498–502. 2011/02/01/ (2011)

    Article  Google Scholar 

  50. M. Kumar, C. Samuel, Selection of best renewable energy source by using VIKOR method. Technol. Econ. Smart Grids Sustain. Energy 2, 8. 2017/04/19 (2017)

    Article  Google Scholar 

  51. M. R. Mokhtar, M. P. Abdullah, M. Y. Hassan, F. Hussin, Combination of AHP-PROMETHEE and TOPSIS for selecting the best Demand Side Management (DSM) options, in 2015 IEEE Student Conference on Research and Development (SCOReD) (2015), pp. 367–372

    Google Scholar 

  52. O. Taylan, R. Alamoudi, M. Kabli, A. AlJifri, F. Ramzi, E. Herrera-Viedma, Assessment of energy systems using extended fuzzy AHP, fuzzy VIKOR, and TOPSIS approaches to manage non-cooperative opinions. Sustainability 12, 2745 (2020)

    Article  Google Scholar 

  53. S. Wibowo, S. Grandhi, A multicriteria group decision making approach for evaluating sustainable smart grid systems, in 2018 13th IEEE Conference on Industrial Electronics and Applications (ICIEA) (2018), pp. 1455–1460

    Google Scholar 

  54. D. Streimikiene, T. Balezentis, I. Krisciukaitienė, A. Balezentis, Prioritizing sustainable electricity production technologies: MCDM approach. Renew. Sust. Energ. Rev. 16, 3302–3311. 2012/06/01/ (2012)

    Article  Google Scholar 

  55. B. Lazzerini, F. Pistolesi, A linear programming-driven MCDM approach for multi-objective economic dispatch in smart grids, in 2015 SAI Intelligent Systems Conference (IntelliSys) (2015), pp. 475–484

    Google Scholar 

  56. B. Lazzerini, F. Pistolesi, Efficient energy dispatching in smart microgrids using an integration of fuzzy AHP and TOPSIS assisted by linear programming, in 8th conference of the European Society for Fuzzy Logic and Technology (2013), pp. 310–317

    Google Scholar 

  57. H. Zhao, N. Li, Performance evaluation for sustainability of strong smart grid by using stochastic AHP and fuzzy TOPSIS methods. Sustainability 8, 129 (2016)

    Article  Google Scholar 

  58. H. Zhao, S. Guo, H. Zhao, Comprehensive assessment for battery energy storage systems based on fuzzy-MCDM considering risk preferences. Energy 168, 450–461. 2019/02/01/ (2019)

    Article  Google Scholar 

  59. H. Zhao, H. Zhao, S. Guo, Comprehensive performance evaluation of electricity grid corporations employing a novel MCDM model. Sustainability 10, 2130 (2018)

    Article  Google Scholar 

  60. H. Zhao, S. Guo, External benefit evaluation of renewable energy power in China for sustainability. Sustainability 7, 4783–4805 (2015)

    Article  Google Scholar 

  61. J. Dong, R. Li, H. Huang, Performance evaluation of residential demand response based on a modified fuzzy VIKOR and scalable computing method. Energies 11, 1097 (2018)

    Article  Google Scholar 

  62. J. Dong, H. Huo, S. Guo, Demand side management performance evaluation for commercial enterprises. Sustainability 8, 1041 (2016)

    Article  Google Scholar 

  63. J. Dong, H. Huo, D. Liu, R. Li, Evaluating the comprehensive performance of demand response for commercial customers by applying combination weighting techniques and fuzzy VIKOR approach. Sustainability 9, 1332 (2017)

    Article  Google Scholar 

  64. A. Mardani, A. Jusoh, E.K. Zavadskas, F. Cavallaro, Z. Khalifah, Sustainable and renewable energy: An overview of the application of multiple criteria decision making techniques and approaches. Sustainability 7, 13947–13984 (2015)

    Article  Google Scholar 

  65. A. Kumar, B. Sah, A.R. Singh, Y. Deng, X. He, P. Kumar, et al., A review of multi criteria decision making (MCDM) towards sustainable renewable energy development. Renew. Sust. Energ. Rev. 69, 596–609. 2017/03/01/ (2017)

    Article  Google Scholar 

  66. A. Mardani, E.K. Zavadskas, Z. Khalifah, N. Zakuan, A. Jusoh, K.M. Nor, et al., A review of multi-criteria decision-making applications to solve energy management problems: Two decades from 1995 to 2015. Renew. Sust. Energ. Rev. 71, 216–256. 2017/05/01/ (2017)

    Article  Google Scholar 

  67. E. Ilbahar, S. Cebi, C. Kahraman, A state-of-the-art review on multi-attribute renewable energy decision making. Energy Strat. Rev. 25, 18–33. 2019/08/01/ (2019)

    Article  Google Scholar 

  68. A. Kandakoglu, A. Frini, S. Ben Amor, Multicriteria decision making for sustainable development: A systematic review. J. Multi-Criteria Decis. Anal. 26, 202–251. 2019/09/01 (2019)

    Article  Google Scholar 

  69. M. Baumann, M. Weil, J.F. Peters, N. Chibeles-Martins, A.B. Moniz, A review of multi-criteria decision making approaches for evaluating energy storage systems for grid applications. Renew. Sust. Energ. Rev. 107, 516–534. 2019/06/01/ (2019)

    Article  Google Scholar 

  70. İ. Kaya, M. Çolak, F. Terzi, A comprehensive review of fuzzy multi criteria decision making methodologies for energy policy making. Energy Strat. Rev. 24, 207–228. 2019/04/01/ (2019)

    Article  Google Scholar 

  71. R. Abu-Taha, Multi-criteria applications in renewable energy analysis: A literature review, in 2011 Proceedings of PICMET'11: Technology Management in the Energy Smart World (PICMET) (2011), pp. 1–8

    Google Scholar 

  72. J.-J. Wang, Y.-Y. Jing, C.-F. Zhang, J.-H. Zhao, Review on multi-criteria decision analysis aid in sustainable energy decision-making. Renew. Sust. Energ. Rev. 13, 2263–2278. 2009/12/01/ (2009)

    Article  Google Scholar 

  73. I. Siksnelyte-Butkiene, E.K. Zavadskas, D. Streimikiene, Multi-criteria decision-making (MCDM) for the assessment of renewable energy technologies in a household: A review. Energies 13, 1164 (2020)

    Article  Google Scholar 

  74. S. Alam, M.F. Sohail, S.A. Ghauri, I.M. Qureshi, N. Aqdas, Cognitive radio based smart grid communication network. Renew. Sust. Energ. Rev. 72, 535–548. 2017/05/01/ (2017)

    Article  Google Scholar 

  75. M. Kuzlu, M. Pipattanasomporn, S. Rahman, Communication network requirements for major smart grid applications in HAN, NAN and WAN. Comput. Netw. 67, 74–88. 2014/07/04/ (2014)

    Article  Google Scholar 

  76. N.A. Qarabsh, S.S. Sabry, H.A. Qarabash, Smart grid in the context of industry 4.0: An overview of communications technologies and challenges. Indonesian J. Electr. Eng. Comput. Sci. 18, 656–665 (2020)

    Article  Google Scholar 

  77. H. Daki, A. El Hannani, A. Aqqal, A. Haidine, A. Dahbi, Big Data management in smart grid: Concepts, requirements and implementation. J. Big Data 4, 1–19 (2017)

    Article  Google Scholar 

  78. R. Kappagantu, S.A. Daniel, Challenges and issues of smart grid implementation: A case of Indian scenario. J. Electr. Syst. Inf. Technol. 5, 453–467. 2018/12/01/ (2018)

    Article  Google Scholar 

  79. L. Tightiz, H. Yang, M.J. Piran, A survey on enhanced smart micro-grid management system with modern wireless technology contribution. Energies 13, 2258 (2020)

    Article  Google Scholar 

  80. E. Ancillotti, R. Bruno, M. Conti, The role of communication systems in smart grids: Architectures, technical solutions and research challenges. Comput. Commun. 36, 1665–1697. 2013/11/01/ (2013)

    Article  Google Scholar 

  81. L. Tightiz, H. Yang, A comprehensive review on IoT protocols’ features in smart grid communication. Energies 13, 2762 (2020)

    Article  Google Scholar 

  82. J. Gao, Y. Xiao, J. Liu, W. Liang, C.L.P. Chen, A survey of communication/networking in smart grids. Futur. Gener. Comput. Syst. 28, 391–404. 2012/02/01/ (2012)

    Article  Google Scholar 

  83. Y. Yan, Y. Qian, H. Sharif, D. Tipper, A survey on smart grid communication infrastructures: Motivations, requirements and challenges. IEEE Commun. Surv. Tutor. 15, 5–20 (2013)

    Article  Google Scholar 

  84. C. Hawk, A. Kaushiva, Cybersecurity and the smarter grid. Electr. J. 27, 84–95. 2014/10/01/ (2014)

    Article  Google Scholar 

  85. P. Jain, M. Gyanchandani, N. Khare, Big data privacy: A technological perspective and review. J. Big Data 3, 25., 2016/11/26 (2016)

    Article  Google Scholar 

  86. A. Bari, J. Jiang, W. Saad, A. Jaekel, Challenges in the smart grid applications: An overview. Int. J. Distrib. Sens. Netw. 10, 974682 (2014)

    Article  Google Scholar 

  87. Y. Zhang, T. Huang, E.F. Bompard, Big data analytics in smart grids: A review. Energy Inf. 1, 8. 2018/08/13 (2018)

    Article  Google Scholar 

  88. L. Wang, Heterogeneous data and big data analytics. Autom. Control Inf. Sci. 3, 8–15 (2017)

    Google Scholar 

  89. M.-A. Sanchez-Hidalgo, M.-D. Cano, A survey on visual data representation for smart grids control and monitoring. Sustain. Energy Grids Netw. 16, 351–369. 2018/12/01/ (2018)

    Article  Google Scholar 

  90. A. Sanchez, W. Rivera, Big data analysis and visualization for the smart grid, in 2017 IEEE International Congress on Big Data (BigData Congress) (2017), pp. 414–418

    Google Scholar 

  91. M. Stefan, J.G. Lopez, M.H. Andreasen, R. L. Olsen, Visualization techniques for electrical grid smart metering data: A survey, in 2017 IEEE Third International Conference on Big Data Computing Service and Applications (BigDataService) (2017), pp. 165–171

    Google Scholar 

  92. D.V. Nga, O.H. See, C.Y. Xuen, L.L. Chee, Visualization techniques in smart grid. Smart Grid Renew. Energy 3, 175 (2012)

    Article  Google Scholar 

  93. M. Strohbach, J. Daubert, H. Ravkin, M. Lischka, Big data storage, in New Horizons for a Data-Driven Economy: A Roadmap for Usage and Exploitation of Big Data in Europe, ed. by J. M. Cavanillas, E. Curry, W. Wahlster, (Springer, Cham, 2016), pp. 119–141

    Chapter  Google Scholar 

  94. M. Lněnička, AHP model for the big data analytics platform selection. Acta Inf. Pragensia 4, 108–121 (2015)

    Article  Google Scholar 

  95. A. Siddiqa, A. Karim, A. Gani, Big data storage technologies: A survey. Front. Inf. Technol. Electron. Eng. 18, 1040–1070. 2017/08/01 (2017)

    Article  Google Scholar 

  96. Y. Shen, Y. Chen, J. Zhang, Z. Sang, Q. Zhou, Self-healing evaluation of smart distribution network based on uncertainty theory. IEEE Access 7, 140022–140029 (2019)

    Article  Google Scholar 

  97. H. Al Garni, A. Kassem, A. Awasthi, D. Komljenovic, K. Al-Haddad, A multicriteria decision making approach for evaluating renewable power generation sources in Saudi Arabia. Sustain. Energy Technol. Assess. 16, 137–150. 2016/08/01/ (2016)

    Google Scholar 

  98. I. Diahovchenko, M. Kolcun, Z. Čonka, V. Savkiv, R. Mykhailyshyn, Progress and challenges in smart grids: Distributed generation, smart metering, energy storage and smart loads. Iranian J. Sci. Technol. Trans. Electr. Eng. 44, 1319–1333. 2020/12/01 (2020)

    Article  Google Scholar 

  99. T.L. Saaty, Decision making with the analytic hierarchy process. Int. J. Serv. Sci. 1, 83–98 (2008)

    Google Scholar 

  100. M. Brunelli, Introduction to the Analytic Hierarchy Process (Springer, New York, 2014)

    MATH  Google Scholar 

  101. T.L. Saaty, L.G. Vargas, Decision Making in Economic, Political, Social, and Technological Environments with the Analytic Hierarchy Process, vol 7 (RWS Publications, Pittsburg, 1994)

    Google Scholar 

  102. S. Seyhan, T. Mehpare, The analytic hierarchy process and analytic network process: an overview of applications. Manag. Decis. 48, 775–808. 2010/06/01 (2010)

    Article  Google Scholar 

  103. L.A. Zadeh, Fuzzy sets. Inf. Control. 8, 338–353. 1965/06/01/ (1965)

    Article  MATH  Google Scholar 

  104. S. Kubler, J. Robert, W. Derigent, A. Voisin, Y. Le Traon, A state-of the-art survey & testbed of fuzzy AHP (FAHP) applications. Expert Syst. Appl. 65, 398–422. 2016/12/15/ (2016)

    Article  Google Scholar 

  105. H. Singh, M.M. Gupta, T. Meitzler, Z.-G. Hou, K.K. Garg, A.M.G. Solo, et al., Real-life applications of fuzzy logic. Adv. Fuzzy Syst. 2013, 581879. 2013/06/26 (2013)

    Google Scholar 

  106. C.-C. Yeh, Y.-F. Chen, Critical success factors for adoption of 3D printing. Technol. Forecast. Soc. Chang. 132, 209–216. 2018/07/01/ (2018)

    Article  Google Scholar 

  107. P.J.M. van Laarhoven, W. Pedrycz, A fuzzy extension of Saaty’s priority theory. Fuzzy Sets Syst. 11, 229–241. 1983/01/01/ (1983)

    Article  MathSciNet  MATH  Google Scholar 

  108. J.J. Buckley, Fuzzy hierarchical analysis. Fuzzy Sets Syst. 17, 233–247. 1985/12/01/ (1985)

    Article  MathSciNet  MATH  Google Scholar 

  109. S.-W. Chou, Y.-C. Chang, The implementation factors that influence the ERP (enterprise resource planning) benefits. Decis. Support. Syst. 46, 149–157. 2008/12/01/ (2008)

    Article  Google Scholar 

  110. S. Kim, S. Kim, A multi-criteria approach toward discovering killer IoT application in Korea. Technol. Forecast. Soc. Chang. 102(1), 143–155 (2016)

    Article  Google Scholar 

  111. E. Forman, K. Peniwati, Aggregating individual judgments and priorities with the analytic hierarchy process. Eur. J. Oper. Res. 108, 165–169. 1998/07/01/ (1998)

    Article  MATH  Google Scholar 

  112. M. Yazdani, E.K. Zavadskas, J. Ignatius, M.D. Abad, Sensitivity analysis in MADM methods: Application of material selection. Eng. Econ. 27, 382–391 (2016)

    Article  Google Scholar 

  113. E. Triantaphyllou, A. Sánchez, A sensitivity analysis approach for some deterministic multi-criteria decision-making methods*. Decis. Sci. 28, 151–194. 1997/01/01 (1997)

    Article  Google Scholar 

  114. A. Memariani, A. Amini, A. Alinezhad, Sensitivity analysis of simple additive weighting method (SAW): The results of change in the weight of one attribute on the final ranking of alternatives. J. Optim. Ind. Eng. (J. Ind. Eng.) 4, 13–18 (2009)

    Google Scholar 

  115. K. Govindan, M. Kaliyan, D. Kannan, A.N. Haq, Barriers analysis for green supply chain management implementation in Indian industries using analytic hierarchy process. Int. J. Prod. Econ. 147, 555–568. 2014/01/01/ (2014)

    Article  Google Scholar 

  116. D.-H. Byun, The AHP approach for selecting an automobile purchase model. Inf. Manag. 38(4), 289–297 (2001)

    Article  MathSciNet  Google Scholar 

  117. M. Kim, A survey on guaranteeing availability in smart grid communications, in 2012 14th International Conference on Advanced Communication Technology (ICACT) (2012), pp. 314–317

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ibrahim Mashal .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Mashal, I. (2021). Evaluation and Assessment of Smart Grid Reliability Using Fuzzy Multi-criteria Decision-Making. In: Rahmani-Andebili, M. (eds) Applications of Fuzzy Logic in Planning and Operation of Smart Grids. Power Systems. Springer, Cham. https://doi.org/10.1007/978-3-030-64627-1_3

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-64627-1_3

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-64626-4

  • Online ISBN: 978-3-030-64627-1

  • eBook Packages: EnergyEnergy (R0)

Publish with us

Policies and ethics