A spherical tensor is a set of components that transform into each others under arbitrary rotations. Another way to state this is to say that the components of a spherical tensor generate a vector space which is invariant under rotation. A spherical tensor is irreducible if this vector space cannot be written as the sum of two invariant (non-zero) subspaces. For an irreducible tensor of rank j, the dimension of the corresponding vector space is \(2j+1\). For example, spherical harmonics \(Y_{l,m}\) are the spherical tensor components of a spherical tensor of rank l. Note that while a \(3 \times 3\) matrix is an irreducible Cartesian tensor, it is a reducible spherical tensor which is the sum of \(j=0\), \(j=1\), and \(j=2\) irreducible spherical tensors. It is evident that such an expansion would provide us with deeper insights by identifying groups of spectra that obey certain symmetry transformation rules which one could easily relate back to the system symmetry [14].
Spherical tensor analysis has been used with great success for the X-ray photoelectron of localized magnetic systems [15,16,17,18,19] and in XAS [14, 20,21,22], including XNLD [23]. The underlying idea is to determine a finite set of fundamental spectra in terms of which all possible experimental spectra can be expressed. More precisely, the XAS spectrum obtained for a given polarization vector (\(\mathbf {\epsilon }\)) and wave vector (\(\varvec{k}\)) of the incident beam is written as a sum of terms which are fundamental spectra [21, 22] (depending only on the sample properties) multiplied by an angular coefficient depending only on the experimental conditions (\(\varvec{k}\), \(\mathbf {\epsilon }\)). Such a geometric and fully decoupled expression is useful: (i) to disentangle the properties of the sample from those of the measurement; (ii) to determine specific experimental arrangements aiming at the observation of specific sample properties; (iii) to provide the most convenient starting point to investigate the reduction of the number of fundamental spectra due to crystal symmetries.
4.2.1 The Case of Electric Dipole Transitions
The first step is to build rank one spherical tensors from the vectors appearing in the transition operator. The polarization vector \(\varvec{\epsilon } = [\epsilon _x, \epsilon _y, \epsilon _z]\) can be written as a spherical tensor \(\varvec{\epsilon ^1}\) with components \(\epsilon ^1_{-1}=\frac{\epsilon _x-i \epsilon _y}{\sqrt{2}}\), \(\epsilon ^1_{1}= -\frac{\epsilon _x+i \epsilon _y}{\sqrt{2}}\), and \(\epsilon ^1_{0}=\epsilon _z\). Similarly, the position spherical tensor, \(\varvec{r^1}\), can be constructed. In the following we shall use the following notation for the coupling of spherical tensors \(\varvec{P}^a\) and \(\varvec{Q}^b\) of ranks a and b into a spherical tensor of rank c
$$\begin{aligned} \begin{aligned} \lbrace \varvec{P}^a \otimes \varvec{Q}^b\rbrace ^c_{\gamma } = \sum ^a_{\alpha =-a} \sum ^b_{\alpha =-b} (a \alpha b \beta | c \gamma ) P^a_{\alpha } Q^b_{\beta }, \end{aligned} \end{aligned}$$
(4.24)
with \((a \alpha b \beta | c \gamma )\) being the Clebsch–Gordan coefficients. Therefore,
$$\begin{aligned} \begin{aligned} \varvec{P}^a \cdot \varvec{Q}^a = \sum ^a_{\alpha =-a} (-1)^\alpha P^a_{-\alpha } Q^a_{\alpha }= (-1)^a \sqrt{2a +1} \lbrace \varvec{P}^a \otimes \varvec{Q}^a \rbrace ^0. \end{aligned} \end{aligned}$$
(4.25)
One has now to compute the scalar product of both tensors which is given by (4.25). The dipole transition operator can be written as in (4.26) taking into consideration that \(\varvec{r}\) is real while \(\varvec{\epsilon }\) is in general complex
$$\begin{aligned} \begin{aligned} T= -\sqrt{3} \lbrace \varvec{\epsilon } ^1 \otimes \varvec{r}^1 \rbrace ^0 \\ T^{\dagger }= -\sqrt{3} \lbrace \varvec{\epsilon }^{1*} \otimes \varvec{r}^{1} \rbrace ^0\;. \end{aligned} \end{aligned}$$
(4.26)
We can recouple the cross section such that polarization tensors are coupled to each other and position tensors are coupled to each other. This means that the expression will have a part that depends only on the experimental geometry (polarization vector) and a part that depends only on the sample properties. This recoupling can be done using the identity
$$\begin{aligned} \lbrace \varvec{P}^g \otimes \varvec{Q}^g \rbrace ^0 \cdot \lbrace \varvec{R}^d \otimes \varvec{S}^d \rbrace ^0 = \sum _a(-1)^a \frac{ \lbrace P^g \otimes R^d\rbrace ^a \cdot \lbrace Q^g \otimes S^d \rbrace ^a}{\sqrt{\left( 2g+1 \right) \left( 2d+1 \right) }}\;. \end{aligned}$$
(4.27)
Here a is constrained to \(|g-d| \le a \le g+d\). Hence, for the dipole transition, \(g=d=1\) and \(0 \le a \le 2\). The recoupled XAS cross section is finally expressed as follows:
$$\begin{aligned} \sigma _{\omega }= -4 \pi \alpha \hbar \omega \mathrm{Im} \left[ \sum ^2_{a=0} (-1)^a \lbrace \varvec{\epsilon } ^{1*} \otimes \varvec{\epsilon }^1 \rbrace ^a \cdot \lbrace \langle I| \varvec{r}^{1} G^{+} \varvec{r}^{1}|I\rangle \rbrace ^a \right] \;. \end{aligned}$$
(4.28)
Quanty can calculate the energy dependent tensors \(R^{(a)} = \lbrace \langle I| \varvec{r}^{1} G^{+} \varvec{r}^{1}|I\rangle \rbrace ^a\) that depend only on the properties of the sample. We will refer to these elements as the fundamental spectra. Note that these fundamental spectra are sometimes referred to as \(\sigma ^{(a)} \). This could be confused with the total cross section \(\sigma _\omega \) so we shall not use this notation here. The experimental geometry tensor is \(E^{a}=\lbrace \varvec{\epsilon } ^{1*} \otimes \varvec{\epsilon }^1 \rbrace ^a\).
4.2.1.1 Term \(a=0\)
The first term can be found by substituting \(a=0\) in (4.28). This is the zero rank of the tensor, given in (4.29).
Here \(C_{\ell m} = C^\ell _m = \sqrt{\frac{4\pi }{2\ell +1}} Y_\ell ^m\). The term \(\sigma (0,0)\) is independent of the incident polarization vector and as such is rotation invariant. It gives the isotropic contribution of the XAS cross section.
4.2.1.2 Term \(a=1\)
The term \(a=1\) consists of three components, namely, \(\sigma (1,0)\), \(\sigma (1,1)\), and \(\sigma (1,-1)\):
$$\begin{aligned} \nonumber \sigma (1,0) =&-4 \pi \alpha \hbar \omega \times \mathrm{Im} \bigg [ \frac{1}{2} \Big ( i \epsilon ^*_x \epsilon _y - i \epsilon _x \epsilon ^*_y \Big ) \\&\times \Big ( \langle I| r C_{1,1}^{*}G^{+} r C_{1,1} |I\rangle - \langle I| r C_{1,-1}^{*} G^{+}r C_{1,-1} |I\rangle \Big ) \bigg ]\;, \end{aligned}$$
(4.30)
$$\begin{aligned} \sigma (1,1) =&-4 \pi \alpha \hbar \omega \times \mathrm{Im} \bigg [ \frac{-1}{2 \sqrt{2}} \Big (\epsilon _x^* \epsilon _z - \epsilon _x \epsilon _z^* + i \epsilon _y \epsilon _z^* - i \epsilon _y^* \epsilon _z \Big ) \end{aligned}$$
(4.31)
$$\begin{aligned}&\Big ( \langle I| r C_{1,0}^{* }G^{+} r C_{1,1} |I\rangle + \langle I| r C_{1,-1}^{*} G^{+} r C_{1,0}|I\rangle \Big ) \bigg ]\;, \end{aligned}$$
(4.32)
$$\begin{aligned} \nonumber \sigma (1,-1)=&-4 \pi \alpha \hbar \omega \times \mathrm{Im} \bigg [ \frac{1}{2 \sqrt{2}} \Big ( \epsilon ^*_x \epsilon _z - \epsilon _x \epsilon ^*_z + i \epsilon _y^* \epsilon _z - i \epsilon _y \epsilon _z^* \Big ) \\&\times \Big ( \langle I| r C_{1,0}^{*} G^{+} r C_{1,-1} |I\rangle + \langle I| r C_{1,1}^{*} G^{+} r C_{1,0} |I\rangle \Big ) \bigg ]\;. \end{aligned}$$
(4.33)
One notices from (4.30), (4.32) and (4.33) that the spectra of \(a=1\) are not active if any of these two cases are satisfied:
-
1.
If linearly polarized light is used for the measurement.
-
2.
If all off-diagonal elements are zero and the diagonal elements are equal.
Another conclusion that can be drawn from the recoupling is the necessity to perform XAS measurements using both linearly and circularly polarized light to probe these fundamental spectra.
4.2.1.3 Term \(a=2\)
The term \(a=2\) consists of five components, namely, \(\sigma (2,0)\), \(\sigma (2,1)\), \(\sigma (2,-1)\), \(\sigma (2,2)\), and \(\sigma (2,-2)\). These are given below as follows:
$$\begin{aligned} \nonumber \sigma (2,0)=&-4 \pi \alpha \hbar \omega \times \mathrm{Im} \bigg [ \frac{1}{6} \Big ( 2 |\epsilon _z|^2 - |\epsilon _x|^2 - |\epsilon _y|^2 \Big ) \Big (2 \langle I| r C_{1,0}^{*} G^{+} r C_{1,0}|I\rangle \\&- \langle I| r C_{1,-1}^{*} G^{+} r C_{1,-1} |I\rangle - \langle I| r C_{1,1}^{*} G^{+} r C_{1,1} |I\rangle \Big ) \bigg ] \;, \end{aligned}$$
(4.34)
$$\begin{aligned} \nonumber \sigma (2,1)=&-4 \pi \alpha \hbar \omega \times \mathrm{Im} \bigg [ \frac{1}{2\sqrt{2}} \Big ( \epsilon _x \epsilon _z^{*} + \epsilon _x^{*} \epsilon _z - i \epsilon _y \epsilon _z^* - i \epsilon _y^* \epsilon _z \Big ) \\&\times \Big ( \langle I| r C_{1,-1}^{*}G^{+}r C_{1,0}|I\rangle - \langle I| r C_{1,0}^{*}G^{+}r C_{1,1}|I\rangle \Big ) \bigg ] \;, \end{aligned}$$
(4.35)
$$\begin{aligned} \nonumber \sigma (2,-1)=&-4 \pi \alpha \hbar \omega \times \mathrm{Im} \bigg [ \frac{1}{2 \sqrt{2}} \Big ( \epsilon _x \epsilon _z^* +\epsilon _x^*\epsilon _z + i \epsilon _y^* \epsilon _z + i \epsilon _y \epsilon _z^* \Big ) \\&\times \Big ( \langle I| r C_{1,0}^{*} G^{+} r C_{1,-1}|I\rangle - \langle I| r C_{1,1}^{*}G^{+} r C_{1,0} |I\rangle \Big ) \bigg ] \;, \end{aligned}$$
(4.36)
$$\begin{aligned} \nonumber \sigma (2,2)=&-4 \pi \alpha \hbar \omega \times \mathrm{Im} \bigg [ \frac{-1}{2} \Big ( (\epsilon _x - i \epsilon _y) (\epsilon ^*_x - i \epsilon ^*_y) \Big )\\&\times \Big ( \langle I| r C_{1,-1}^{*} G^{+} r C_{1,1} | I\rangle \Big ) \bigg ] \;, \end{aligned}$$
(4.37)
$$\begin{aligned} \nonumber \sigma (2,-2) =&-4 \pi \alpha \hbar \omega \times \mathrm{Im} \bigg [ \frac{-1}{2} \Big ( (\epsilon _x + i \epsilon _y) (\epsilon ^*_x + i \epsilon ^*_y) \Big )\\&\times \Big ( \langle I| r C_{1,1}^{*} G^{+} r C_{1,-1} |I\rangle \Big ) \bigg ] \;. \end{aligned}$$
(4.38)
It can be noted from (4.34), (4.35), (4.36), (4.37), and (4.38) that the \(a=2\) spectra are active for linearly polarized light and hence these spectra are responsible for the angular dependence observed with linear light. On the contrary, no difference can be observed between right and left circularly polarized light. Another feature of these terms is that they are not active if the following two conditions are satisfied:
-
1.
The diagonal matrix elements are equal.
-
2.
The off-diagonal matrix elements are zero.
4.2.1.4 General Dipole Expression
The general dipole expression is given in (4.39). From this equation, the dipole XAS cross-section for an arbitrary polarization (\(\varvec{\epsilon }\)) can be constructed from the nine fundamental spectra derived above.
$$\begin{aligned} \nonumber \sigma _{\omega }^{Dipole} (\varvec{\epsilon })= & {} - 4\pi \alpha \hbar \omega \times \mathrm{Im} \left[ \frac{1}{3} R(0,0) + \frac{1}{2} \left( i \epsilon ^*_x \epsilon _y - i \epsilon _x \epsilon ^*_y \right) R(1,0) \right. \\&\nonumber -\frac{1}{2 \sqrt{2}} \left( \epsilon _x^* \epsilon _z - \epsilon _x \epsilon _z^* + i \epsilon _y \epsilon _z^* - i \epsilon _y^* \epsilon _z \right) R(1,1) \\&\nonumber +\frac{1}{2 \sqrt{2}} \left( \epsilon ^*_x \epsilon _z - \epsilon _x \epsilon ^*_z + i \epsilon _y^* \epsilon _z - i \epsilon _y \epsilon _z^* \right) R(1,-1) \\&\nonumber + \frac{1}{6} \left( 2 |\epsilon _z|^2 - |\epsilon _x|^2 - |\epsilon _y|^2 \right) R(2,0)\\&\nonumber +\frac{1}{2\sqrt{2}} \left( \epsilon _x \epsilon _z^{*} + \epsilon _x^{*} \epsilon _z - i \epsilon _y \epsilon _z^* - i \epsilon _y^* \epsilon _z\right) R(2,1) \\&\nonumber + \frac{1}{2 \sqrt{2}} \left( \epsilon _x \epsilon _z^* +\epsilon _x^*\epsilon _z + i \epsilon _y^* \epsilon _z + i \epsilon _y \epsilon _z^* \right) R(2,-1) \\&\nonumber -\frac{1}{2} \left( (\epsilon _x - i \epsilon _y) (\epsilon ^*_x - i \epsilon ^*_y) \right) R(2,2)\\&\left. - \frac{1}{2} \left( (\epsilon _x + i \epsilon _y) (\epsilon ^*_x + i \epsilon ^*_y) \right) R(2,-2) \right] \;, \end{aligned}$$
(4.39)
where the R are the fundamental spectra and are defined as
$$\begin{aligned} \nonumber R(0,0)= & {} \langle I| r C_{1,0}^{*}G^{+} r C_{1,0} |I\rangle + \langle I|r C_{1,-1}^{*} G^{+} r C_{1,-1}^1|I\rangle \\&+\langle I| r C_{1,1}^{1*} G^{+} r C_{1,1} | I\rangle \;, \end{aligned}$$
(4.40)
$$\begin{aligned} R(1,0)= & {} \langle I| r C_{1,1}^{*}G^{+} r C_{1,1} |I\rangle - \langle I| r C_{1,-1}^{*} G^{+}r C_{1,-1} |I\rangle \;, \end{aligned}$$
(4.41)
$$\begin{aligned} R(1,1)= & {} \langle I| r C_{1,0}^{* }G^{+} r C_{1,1} |I\rangle +\langle I| r C_{1,-1}^{*} G^{+} r C_{1,0}|I\rangle \;, \end{aligned}$$
(4.42)
$$\begin{aligned} R(1,-1)= & {} \langle I| r C_{1,0}^{*} G^{+} r C_{1,-1} |I\rangle + \langle I| r C_{1,1}^{*} G^{+} r C_{1,0} |I\rangle \;, \end{aligned}$$
(4.43)
$$\begin{aligned} \nonumber R(2,0)= & {} 2 \langle I| r C_{1,0}^{*} G^{+} r C_{1,0}|I\rangle - \langle I| r C_{1,-1}^{*} G^{+} r C_{1,-1} |I\rangle \\&- \langle I| r C_{1,1}^{*} G^{+} r C_{1,1} |I\rangle \;, \end{aligned}$$
(4.44)
$$\begin{aligned} R(2,1)= & {} \langle I| r C_{1,-1}^{*}G^{+}r C_{1,0}|I\rangle - \langle I| r C_{1,0}^{*}G^{+}r C_{1,1}|I\rangle \;, \end{aligned}$$
(4.45)
$$\begin{aligned} R(2,-1)= & {} \langle I| r C_{1,0}^{*} G^{+} r C_{1,-1}|I\rangle - \langle I| r C_{1,1}^{*}G^{+} r C_{1,0} |I\rangle \;, \end{aligned}$$
(4.46)
$$\begin{aligned} R(2,2)= & {} \langle I| r C_{1,-1}^{*} G^{+} r C_{1,1} | I\rangle \;, \end{aligned}$$
(4.47)
$$\begin{aligned} R(2,-2)= & {} \langle I| r C_{1,1}^{*} G^{+} r C_{1,-1} |I\rangle \;. \end{aligned}$$
(4.48)
4.2.1.5 Case Study of a \(d^9\) ion
Octahedral Crystal Field
Equation (4.39) can be simplified when the symmetry of the absorbing system is taken into account. As a demonstration, we shall study a \(d^9\) ion in octahedral (\(O_h\)) symmetry. Figure 4.3 (top) shows the matrix elements for such a system. These matrix elements are the direct output of Quanty and will be referred to as the conductivity tensor. One finds that all the off-diagonal matrix elements are equal to zero and all the diagonal matrix elements are equal. This leaves only the R(0, 0) term of (4.39) not equal to zero. Hence one can conclude that the cross section of a dipole transition is isotropic in an \(O_h\) system.
Tetragonal Crystal Field
Let us now consider a tetragonal distortion such that the octahedron is compressed along the z-axis. The ground state in this case has a hole in the \(d_{z^2}\) orbital (neglecting spin-orbit coupling) and the z-axis is now different from the x- and y-axes. The conductivity tensor for such a system is shown in Fig. 4.3 (bottom). As could be intuitively expected, the middle panel corresponding to \(C_{0}^{1} G^{+} C_{0}^{1}\) is different from the other two diagonal elements. This implies that the following terms come into play (see Fig. 4.4):
-
R(0, 0) which gives the isotropic cross section.
-
R(2, 0) which has a polarization dependence of the form \(\frac{1}{6} \left( 2 |\epsilon _z|^2 - |\epsilon _x|^2 - |\epsilon _y|^2 \right) \).
It is interesting in this case to investigate what types of dichroism effect could be observed. Consider rotating the incident linear polarization vector in the \(x-y\)-plane. In this case \(\epsilon = [\cos (\theta ), \sin (\theta ),0]\) where \(\theta \) is the rotation angle defined from the x-axis. The expression of the polarization dependence for the term R(2, 0) reveals that no angular dependence is to be expected in this case. The system is effectively \(O_h\) in the \(x-y\)-plane and one would expect no angular dependence as discussed in the previous example. This XAS cross section for this rotation is shown in Fig. 4.5a. On the contrary, rotating the polarization vector in the \(x-z\) (\(\mathbf {\epsilon } = [\cos (\theta ), 0,\sin (\theta )]\)) or \(y-z\) (\(\mathbf {\epsilon } = [0, \cos (\theta ),\sin (\theta )]\)) planes should yield an angular dependence as the polarization vector probes the distortion, which is indeed observed as shown in Fig. 4.5b and c. The dependence of the XAS cross-section on the direction of the linearly polarized light is an effect referred to as linear dichroism as discussed previously.
Octahedral Crystal Field with an Exchange Field \(\parallel \mathbf {z}\)
Another interesting system to investigate is a magnetic \(3d^9\) ion where the crystal field is \(O_h\) with an exchange field aligned along the z-axis. Hence, the z-axis is inequivalent to the x- and y-axes due to the exchange field. The conductivity tensor of such a system is shown in Fig. 4.6. The exchange field is aligned along a high symmetry direction in this example which preserves the \(C_4\) rotation symmetry of the system and consequently preserves the symmetry of the conductivity tensor. All off-diagonal elements are zero. Note that the off-diagonal elements are zero because we chose to calculate the tensor using the symmetry adapted transition operators. Three fundamental spectra come into play and are plotted in Fig. 4.7:
-
R(0, 0) which gives the isotropic cross section,
-
R(1, 0) which has a polarization dependence of the form \( \frac{1}{2} \left( i \epsilon ^*_x \epsilon _y - i \epsilon _x \epsilon ^*_y \right) \;\),
-
R(2, 0) which has a polarization dependence of the form \(\frac{1}{6} \left( 2 |\epsilon _z|^2 - |\epsilon _x|^2 - |\epsilon _y|^2 \right) \;\).
Nearly no angular dependence can be observed by rotating the incident linear polarization vector in the \(x-y\)-, \(x-z\)-, and \(y-z\)-planes (see Fig. 4.8a, b, and c). This is consistent with the fact that the fundamental spectrum R(2, 0) responsible for the angular dependence is nearly zero [R(2, 0) is about two orders of magnitude smaller than the other two fundamental spectra in this system]. The difference in the absorption cross section of linear polarized light in a magnetic system is an effect referred to as XMLD [24]. The magnitude of the XMLD effect for this system can be seen in Fig. 4.9. Note that the magnitude of the XMLD effect in \({\mathrm{Fe}_\mathrm{3}\mathrm{O}_\mathrm{4}}\) is \({\sim } 1\%\) of the XAS signal, which could be reliably measured on existing beamlines [25].
A strong dichroism is observed when circularly polarized light is used as in the case for Fig. 4.10a. Here the incident polarization vector is either left or right polarized about the z-axis leading to a difference in the absorption. This is an effect referred to as X-ray magnetic circular dichroism (XMCD) [26]. It can be seen from the expression of the polarization part of the cross-section that if the incident wave vector is aligned perpendicular to the exchange field, for example, for \(\mathbf {\epsilon }=[0,-\frac{i}{\sqrt{2}},\frac{1}{\sqrt{2}}]\), and \(\mathbf {\epsilon }=[0,-\frac{i}{\sqrt{2}},-\frac{1}{\sqrt{2}}]\), no XMCD effect is observed. This is shown in Fig. 4.10b and c. This dichroism can be used to quantify the ground state spin and orbital moments of the system as given by the sum rules [27].
Octahedral Crystal Field with an Exchange Field \(\parallel [210]\)
As a last example, we consider a system in \(C_1\) symmetry. Consider aligning the exchange field along a low symmetry direction, e.g., [210]. The exchange field now completely breaks the symmetry of the system and the conductivity tensor has off-diagonal elements (bottom of Fig. 4.6). Contrary to the previous case (where the exchange field was aligned to the z-axis), it is now not possible to find a rotated basis set that diagonalizes the conductivity tensor for all excited states (i.e., the basis set becomes energy dependent). It remains possible to diagonalize the conductivity tensor for a given excited state. It is important to realize that when the exchange field is aligned along a low symmetry direction, off-diagonal elements become important and more dichroic effects come into play according to (4.39) and (4.48).
4.2.2 The Case of Electric Quadrupole Transitions
For electric quadrupole transitions, we will follow the same procedure as the one used for electric dipole. The transition operator is now (up to a factor of i/2) \(T= (\varvec{\epsilon } \cdot \varvec{r})(\varvec{k}. \varvec{r})\). It can be seen from the expression of the transition operator that the cross section will depend on the orientation of the polarization vector (\(\varvec{\epsilon }\)) and of the wave vector (\(\varvec{k}\)) with respect to the absorbing system. Two recoupling steps are required in this case. First, the transition operator can be rewritten into a combination of scalar products of two tensors: one tensor that depends only on \(\mathbf {\epsilon }\) and \(\mathbf {k}\) coupled together, and one tensor that depends only on the absorber \(\mathbf {r}\). This recoupled transition operator is expressed as follows:
$$\begin{aligned} \begin{aligned} \hat{T} = \sum _{b=0}^{2} (-1)^b \lbrace \varvec{\epsilon }^1\otimes \varvec{k}^1 \rbrace ^b . \lbrace \varvec{r}^1 \otimes \varvec{r}^1\rbrace ^b \;,\\ \hat{T^{\dagger }} = \sum _{c=0}^{2} (-1)^c \lbrace \varvec{\epsilon }^{1*} \otimes \varvec{k}^1 \rbrace ^c . \lbrace \varvec{r}^1 \otimes \varvec{r}^1\rbrace ^c \;. \end{aligned} \end{aligned}$$
(4.49)
The next step is to recouple the two transition amplitudes of the absorption cross section. This gives the expression
$$\begin{aligned} \nonumber \sigma _{\omega }= \pi ^2 \alpha \hbar \omega \times \mathrm{Im} \bigg [ \sum ^4_{a=0} \sum _{b=0}^{2} \sum _{c=0}^{2}&(-1)^a (-1)^b (-1)^c \lbrace \lbrace \varvec{\epsilon }^{*1}\otimes \varvec{k}^1 \rbrace ^c \otimes \lbrace \varvec{\epsilon }^{1 }\otimes \varvec{k}^1 \rbrace ^b \rbrace ^a \\&\times \lbrace \langle I|\lbrace \varvec{r}^1 \otimes \varvec{r}^1\rbrace ^c G^{+} \lbrace \varvec{r}^1 \otimes \varvec{r}^1\rbrace ^b |I\rangle \rbrace ^a \bigg ] \;. \end{aligned}$$
(4.50)
Before attempting to write out the recoupled absorption cross section in (4.50), it is useful to simplify the expression of the transition operator first. This in turn will simplify the expression of the absorption cross section. The transition operator is a rank two tensor according to (4.49) with \(b=0,1,2\). We shall write out the three b terms:
-
Term b = 0
$$\begin{aligned} \nonumber (-1)^0 \lbrace \varvec{\epsilon }^1\otimes \varvec{k}^1 \rbrace ^0 . \lbrace \varvec{r}^1 \otimes \varvec{r}^1\rbrace ^0 =&\left( - \frac{1}{\sqrt{3}} \epsilon _0^{1} k_0^{1}+ \frac{1}{\sqrt{3}} \epsilon _1^{1} k_{-1}^{1}+ \frac{1}{\sqrt{3}} \epsilon _{-1}^{1} k_1^{1} \right) \\&\times \left( -\frac{1}{\sqrt{3}} r_0^1r_0^1 + \frac{1}{\sqrt{3}}r_{1}^{1}r_{-1}^1+ \frac{1}{\sqrt{3}} r_{-1}^{1}r_{1}^1 \right) \;. \end{aligned}$$
(4.51)
The first part of the expression can be rewritten as \(\frac{1}{\sqrt{3}} \left( - \epsilon _z k_z - \epsilon _x k_x - \epsilon _y k_y \right) \). This is equal to zero because the polarization vector is orthogonal to the wave vector. This means that the term \(b=0\) is zero.
-
Term b = 1
This term consists of three components according to
$$\begin{aligned} (-1)^1 \lbrace \varvec{\epsilon }^1\otimes \varvec{k}^1 \rbrace ^1 . \lbrace \varvec{r}^1 \otimes \varvec{r}^1\rbrace ^1 =- \frac{i}{\sqrt{2}} \frac{i}{\sqrt{2}} \left( \varvec{\epsilon } \times \varvec{k} \right) \cdot \left( \varvec{r} \times \varvec{r} \right) \;. \end{aligned}$$
(4.52)
The second part of the expression is equal to zero because it is a cross product of the same vector. This means that the term \(b=1\) is also zero.
-
Term b = 2 This term consists of five components. These five components can be simplified applying the orthogonality between \(\varvec{\epsilon }\) and \(\varvec{k}\). In addition the \(\varvec{r}\) tensor can be expressed in terms of spherical harmonics of \(l=2\) according to the relation \(\lbrace \varvec{r}^1 \otimes \varvec{r}^1\rbrace ^{2}_m = r^{2}_{m} = \sqrt{\frac{8 \pi }{15}} Y_{2,m}(\varvec{r}) = \sqrt{\frac{8 \pi }{15}} r^2 Y_{2,m}(\theta , \phi )\). One obtains the following five components after simplification
$$\begin{aligned} \lbrace \varvec{\epsilon }^1 \otimes \varvec{k}^1 \rbrace ^2_0 \lbrace \varvec{r}^1 \otimes \varvec{r}^1\rbrace ^{2}_0= & {} \left( \sqrt{\frac{3}{2}} \epsilon _z k_z \right) \left( r^2_0 \right) \;,\end{aligned}$$
(4.53)
$$\begin{aligned} \lbrace \varvec{\epsilon }^1 \otimes \varvec{k}^1 \rbrace ^2_1\lbrace \varvec{r}^1 \otimes \varvec{r}^1\rbrace ^{2}_{-1}= & {} \left( - \frac{k_z (\epsilon _x + i \epsilon _y) + (k_x + i k_y) \epsilon _z}{2} \right) \left( r^2_{-1} \right) \;, \end{aligned}$$
(4.54)
$$\begin{aligned} \lbrace \varvec{\epsilon }^1 \otimes \varvec{k}^1 \rbrace ^2_{-1} \lbrace \varvec{r}^1 \otimes \varvec{r}^1\rbrace ^{2}_{1}= & {} \left( \frac{k_z (\epsilon _x - i \epsilon _y) + (k_x - i k_y) \epsilon _z}{2} \right) \left( r_{1}^{2} \right) \;, \end{aligned}$$
(4.55)
$$\begin{aligned} \lbrace \varvec{\epsilon }^1 \otimes \varvec{k}^1 \rbrace ^2_2 \lbrace \varvec{r}^1 \otimes \varvec{r}^1\rbrace ^{2}_{-2}= & {} \left( \frac{ (k_x + i k_y) (\epsilon _x + i \epsilon _y)}{2} \right) \left( r_{-2}^{2}\right) \;, \end{aligned}$$
(4.56)
$$\begin{aligned} \lbrace \varvec{\epsilon }^1 \otimes \varvec{k}^1 \rbrace ^2_{-2} \lbrace \varvec{r}^1 \otimes \varvec{r}^1\rbrace ^{2}_{2}= & {} \left( \frac{ (k_x - i k_y) (\epsilon _x - i \epsilon _y)}{2} \right) \left( r_{2}^{2}\right) \;. \end{aligned}$$
(4.57)
The same arguments apply for the \(c=0,1,2\) terms of the recoupled \(\hat{T}^{\dagger }\) operator ending up with the values \(b=2\) and \(c=2\) for the XAS cross section. The recoupled cross section writes
Now one can develop (4.58) in further details for \(a=0,1,2,3,4\). We shall only report the final expression here.
4.2.3 Term \(a=0\)
Let us substitute \(a=0\) in (4.58). This is the zero rank of the tensor, \(\sigma (0,0)\), describing an isotropic spectrum
4.2.4 Term \(a=1\)
The term \(a=1\) consists of three components, namely, \(\sigma (1,0)\), \(\sigma (1,1)\) and \(\sigma (1,-1)\)
$$\begin{aligned} \nonumber \sigma (1,0)= & {} \pi ^2 \alpha \hbar \omega k^2 \times \mathrm{Im} \bigg [ \frac{i}{20} \Big ( ( 2 k_x^2+2 k_y^2+k_z^2 ) \epsilon _x \epsilon _y^* - (2 k_x^2+2 k_y^2+k_z^2) \epsilon _x^* \epsilon _y \\ \nonumber&+ k_y k_z \epsilon _x \epsilon _z^* - k_y k_z \epsilon _x^* \epsilon _z + k_x k_z \epsilon _z \epsilon _y^* - k_x k_z \epsilon _y \epsilon _z^* \Big )\\ \nonumber&\times \Big ( \langle I|r^2 C^{*}_{2,1} G^{+} r^2 C_{2,1} |I\rangle - \langle I| r^2 C^{*}_{2,-1} G^{+}r^2 C_{2,-1} |I\rangle \\&+2 \langle I|r^2 C^{*}_{2,2} G^{+} r^2 C_{2,2} |I\rangle -2 \langle I| r^2 C^{*}_{2,-2} G^{+} r^2 C_{2,-2} |I\rangle \Big ) \bigg ] \;, \end{aligned}$$
(4.60)
$$\begin{aligned} \nonumber \sigma (1,1)= & {} \pi ^2 \alpha \hbar \omega k^2 \times \mathrm{Im} \bigg [ \frac{1}{40} \Big ( (2 k_x^2+ k_y^2 + 2 k_z^2 - i k_x k_y ) \epsilon _x^* \epsilon _z \\ \nonumber&-(2 k_x^2+ k_y^2 + 2 k_z^2 -i k_x k_y) \epsilon _x \epsilon _z^* -i (k_x^2 + 2 k_y^2 + 2 k_z^2 +i k_x k_y)\epsilon _y^* \epsilon _z \\ \nonumber&+ i (k_x^2 +2k_y^2 + 2k_z^2 +ik_x k_y) \epsilon _y \epsilon _z^* + (k_y + i k_x ) k_z \epsilon _x^* \epsilon _y - i (k_x -i k_y) k_z \epsilon _x \epsilon _y^* \Big ) \\ \nonumber&\times \Big ( \sqrt{6} \langle I| r^2 C^{*}_{2,-1} G^{+} r^2 C_{2,0} |I\rangle +\sqrt{6} \langle I| r^2 C^{*}_{2,0} G^{+} r^2 C_{2,1} |I\rangle \\&+ 2 \langle I| r^2 C^{*}_{2,-2} G^{+} r^2 C_{2,-1} |I\rangle +2 \langle I| r^{2} C^{*}_{2,1} G^{+} r^2 C_{2,2} |I\rangle \Big ) \bigg ] \;, \end{aligned}$$
(4.61)
$$\begin{aligned} \nonumber \sigma (1,-1)= & {} \pi ^2 \alpha \hbar \omega k^2 \times \mathrm{Im} \bigg [ \frac{-1}{40} \Big ( (2k_x^2 + k_y^2 + 2 k_z^2 + i k_x k_y) \epsilon _x^* \epsilon _z \\ \nonumber&- (2k_x^2 +k_y^2 + 2 k_z^2 + i k_x k_y) \epsilon _x \epsilon _z^* + i(k_x^2 + 2 k_y^2 + 2k_z^2 - i k_x k_y) \epsilon _y^* \epsilon _z \\ \nonumber&- i(k_x^2 +2 k_y^2+ 2 k_z^2 -i k_x k_y) \epsilon _y \epsilon _z^* + k_z (k_y-i k_x) \epsilon _x^* \epsilon _y + i k_z(k_x + i k_y) \epsilon _x \epsilon _y^* \Big ) \\ \nonumber&\times \Big ( \sqrt{6} \langle I| r^2C^{*}_{2,1}G^{+} r^ C_{2,0} |I\rangle +\sqrt{6} \langle I| r^2 C^{*}_{2,0} G^{+} r^2 C_{2,-1} |I\rangle \\&+2 \langle I| r^2 C^{*}_{2,2} G^{+} r^2 C_{2,1} |I\rangle + 2 \langle I| r^2 C^{*}_{2,-1} G^{+} r^2 C_{2,-2} |I\rangle \Big ) \bigg ] \;. \end{aligned}$$
(4.62)
A quick check of (4.60), (4.61) and (4.62) reveals that the term \(a=1\) is zero for linear light. This implies that these fundamental spectra can only be probed with circular or elliptically polarized light. It is also clear that if the conductivity tensor has no off-diagonal terms, and satisfies
$$\begin{aligned} \nonumber \langle I|r^2 C^{*}_{2,1} G^{+} r^2 C_{2,1} |I\rangle= & {} \langle I| r^2 C^{*}_{2,-1} G^{+}r^2 C_{2,-1} |I\rangle \;,\\ \nonumber \langle I|r^2 C^{*}_{2,2} G^{+} r^2 C_{2,2} |I\rangle= & {} \langle I| r^2 C^{*}_{2,-2} G^{+} r^2 C_{2,-2} |I\rangle \;, \end{aligned}$$
then the term \(a=1\) is again zero.
4.2.5 Term \(a=2\)
The term \(a=2\) consists of five components, namely, \(\sigma (2,0)\), \(\sigma (2,1)\), \(\sigma (2,-1)\), \(\sigma (2,2)\), and \(\sigma (2,-2)\)
$$\begin{aligned} \nonumber \sigma (2,0)= & {} \pi ^2 \alpha \hbar \omega k^2 \times \mathrm{Im} \bigg [ \frac{1}{84} \Big ( (4 k_x^2 \epsilon _x -2 k_x k_y \epsilon _y + k_x k_z \epsilon _z + 6 k_y^2 \epsilon _x - 3 k_z^2 \epsilon _x ) \epsilon _x^* \\ \nonumber&+ (6 k_x^2 \epsilon _y - 2 k_x k_y \epsilon _x + 4 k_y^2 \epsilon _y + k_y k_z \epsilon _z - 3 k_z^2 \epsilon _y) \epsilon _y^* \\ \nonumber&+ (-3 k_x^2 \epsilon _z + k_x k_z \epsilon _x - 3 k_y^2 \epsilon _z + k_y k_z \epsilon _y - 8 k_z^2 \epsilon _z) \epsilon _z^* \Big )\\ \nonumber&\times \Big ( 2\langle I|r^2 C^{*}_{2,2} G^{+} r^2 C_{2,2} |I\rangle + 2 \langle I|r^2 C^{*}_{2,-2} G^{+} r^2 C_{2,-2} |I\rangle \\ \nonumber&- 2 \langle I|r^2 C^{*}_{2,0} G^{+} r^2 C_{2,0} |I\rangle - \langle I|r^2 C^{*}_{2,1} G^{+} r^2 C_{2,1} |I\rangle \\&- \langle I|r^2 C^{*}_{2,-1} G^{+} r^2 C_{2,-1} |I\rangle \Big ) \bigg ] \;, \end{aligned}$$
(4.63)
$$\begin{aligned} \nonumber \sigma (2,1)= & {} \pi ^2 \alpha \hbar \omega k^2 \times \mathrm{Im} \bigg [ \frac{-1}{168} \Big ( \big [ (4 k_x \epsilon _x - 6 i k_y \epsilon _x + i k_x \epsilon _y - ky \epsilon _y) k_z \\ \nonumber&+ (2 k_x^2 + i k_x k_y + 3 k_y^2 + 2 k_z^2) \epsilon _z \big ] \epsilon _x^* -i \big [ (-k_x \epsilon _x - i k_y \epsilon _x + 6 i k_x \epsilon _y + 4 ky \epsilon _y ) k_z \\ \nonumber&+ (3 k_x^2 - i k_x k_y + 2 (k_y^2 + k_z^2)) \epsilon _z \big ] \epsilon _y^* + \big [ 2 k_z^2 (\epsilon _x -i \epsilon _y) + k_y^2 (3 \epsilon _x - 2 i \epsilon _y ) \\ \nonumber&+k_x^2(2\epsilon _x - 3 i\epsilon _y) - 4 i k_y k_z \epsilon _z + k_x (i k_y \epsilon _x - k_y \epsilon _y + 4 k_z \epsilon _z) \big ] \epsilon _z^* \Big ) \\ \nonumber&\times \Big ( \sqrt{6} \langle I|r^2 C^{*}_{2,0} G^{+} r^2 C_{2,1} |I\rangle - \sqrt{6} \langle I|r^2 C^{*}_{2,-1} G^{+} r^2 C_{2,0} |I\rangle \\&+ 6 \langle I|r^2 C^{*}_{2,1} G^{+} r^2 C_{2,2} |I\rangle - 6 \langle I|r^2 C^{*}_{2,-2} G^{+} r^2 C_{2,-1} |I\rangle \Big ) \bigg ] \;, \end{aligned}$$
(4.64)
$$\begin{aligned} \nonumber \sigma (2,-1)= & {} \pi ^2 \alpha \hbar \omega k^2 \times \mathrm{Im} \bigg [ \frac{1}{168} \Big ( \big [ 6 i k_y k_z \epsilon _x - k_y k_z \epsilon _y + 2 k_x^2 \epsilon _z + 3 k_y^2 \epsilon _z + 2 k_z^2 \epsilon _z \\ \nonumber&- i k_x (4i k_z \epsilon _x + k_z \epsilon _y + k_y \epsilon _z) \big ] \epsilon _x^* + i\big [-k_x k_z (\epsilon _x + 6i\epsilon _y) + k_y k_z (i \epsilon _x + 4 \epsilon _y) \\ \nonumber&+ 3 k_x^2 \epsilon _z + i k_x k_y \epsilon _z + 2(k_y^2 + kz^2) \epsilon _z \big ] \epsilon _y^*+ \big [ 2 k_z^2 (\epsilon _x + i \epsilon _y) + k_y^2 (3 \epsilon _x + 2 i \epsilon _y) \\ \nonumber&+ k_x^2 (2\epsilon _x + 3i \epsilon _y) + 4 i ky kz \epsilon _z + k_x (-i k_y \epsilon _x - k_y \epsilon _y + 4 k_z \epsilon _z) \big ] \epsilon _z^* \Big )\\ \nonumber&\times \Big ( \sqrt{6} \langle I|r^2 C^{*}_{2,0} G^{+} r^2 C_{2,-1} |I\rangle - \sqrt{6} \langle I|r^2 C^{*}_{2,1} G^{+} r^2 C_{2,0} |I\rangle \\&+ 6 \langle I|r^2 C^{*}_{2,-1} G^{+} r^2 C_{2,-2} |I\rangle - 6 \langle I|r^2 C^{*}_{2,2} G^{+} r^2 C_{2,1} |I\rangle \Big ) \bigg ] \;, \end{aligned}$$
(4.65)
$$\begin{aligned} \nonumber \sigma (2,2)= & {} \pi ^2 \alpha \hbar \omega k^2 \times \mathrm{Im} \bigg [ \frac{1}{4 \sqrt{21}} \Big ( -2 ( k_x - i k_y) ( \epsilon _x^*-i \epsilon _y^* ) ( k_x \epsilon _x+k_y \epsilon _y- 2 k_z \epsilon _z) \\ \nonumber&-3 (\epsilon _z (k_x - i k_y) + k_z (\epsilon _x - i \epsilon _y)) ( \epsilon _z^* (k_x - i k_y)+ k_z \epsilon _x^*-i k_z \epsilon _y^*) \\ \nonumber&-2 (k_x -i k_y) (\epsilon _x -i \epsilon _y) (k_x \epsilon _x^*+ k_y \epsilon _y^* - 2 k_z \epsilon _z^*) \Big ) \\ \nonumber&\times \Big ( \sqrt{\frac{2}{7}} \langle I|r^2 C^{*}_{2,0} G^{+} r^2 C_{2,2} |I\rangle + \sqrt{\frac{3}{7}} \langle I|r^2 C^{*}_{2,-1} G^{+} r^2 C_{2,1} |I\rangle \\&+ \sqrt{\frac{2}{7}} \langle I|r^2 C^{*}_{2,-2} G^{+} r^2 C_{2,0} |I\rangle \Big ) \bigg ] \;, \end{aligned}$$
(4.66)
$$\begin{aligned} \nonumber \sigma (2,-2)= & {} \pi ^2 \alpha \hbar \omega k^2 \times \mathrm{Im} \bigg [ \frac{1}{4 \sqrt{21}} \Big ( -2(k_x+i k_y) (\epsilon _x^*+i \epsilon _y^* ) (k_x \epsilon _x + k_y \epsilon _y - 2 k_z \epsilon _z) \\ \nonumber&-3( \epsilon _z ( k_x + i k_y)+ k_z (\epsilon _x +i \epsilon _y)) (\epsilon _z^* (k_x + i k_y ) + k_z\epsilon _x^*+ i k_z \epsilon _y^*) \\ \nonumber&-2(k_x+i k_y) (\epsilon _x+i \epsilon _y) (k_x \epsilon _x^*+k_y\epsilon _y^*-2 k_z \epsilon _z^*) \Big ) \\ \nonumber&\times \Big ( \sqrt{\frac{2}{7}} \langle I|r^2 C^{*}_{2,0} G^{+} r^2 C_{2,-2} |I\rangle + \sqrt{\frac{3}{7}} \langle I|r^2 C^{*}_{2,1} G^{+} r^2 C_{2,-1} |I\rangle \\&+ \sqrt{\frac{2}{7}} \langle I|r^2 C^{*}_{2,2} G^{+} r^2 C_{2,0} |I\rangle \Big ) \bigg ] \;. \end{aligned}$$
(4.67)
4.2.6 Term \(a=3\)
The term \(a=3\) consists of seven components, namely, \(\sigma (3,0)\), \(\sigma (3,1)\), \(\sigma (3,-1)\), \(\sigma (3,2)\), \(\sigma (3,-2)\), \(\sigma (3,3)\), and \(\sigma (3,-3)\)
$$\begin{aligned} \nonumber \sigma (3,0)= & {} \pi ^2 \alpha \hbar \omega k^2 \times \mathrm{Im} \bigg [ \frac{i}{20} \Big ( ( k_x^2+k_y^2 - 2 k_z^2) \epsilon _x \epsilon _y^* - (k_x^2 + k_y^2 - 2 k_z^2 ) \epsilon _y \epsilon _x^* \\ \nonumber&+2 k_x k_z \epsilon _y \epsilon _z^* -2 k_x k_z \epsilon _z \epsilon _y^* +2 k_y k_z \epsilon _z \epsilon _x^* - 2 k_y k_z \epsilon _x \epsilon _z^* \Big ) \\ \nonumber&\times \Big ( 2 \langle I|r^2 C^{*}_{2,-1} G^{+} r^2 C_{2,-1} |I\rangle - 2 \langle I|r^2 C^{*}_{2,1} G^{+} r^2 C_{2,1} |I\rangle \\&+ \langle I|r^2 C^{*}_{2,2} G^{+} r^2 C_{2,2} |I\rangle - \langle I|r^2 C^{*}_{2,-2} G^{+} r^2 C_{2,-2} |I\rangle \Big ) \bigg ] \;, \end{aligned}$$
(4.68)
$$\begin{aligned} \nonumber \sigma (3,1)= & {} \pi ^2 \alpha \hbar \omega k^2 \times \mathrm{Im} \bigg [ \frac{1}{40 \sqrt{6}} \Big ( i ( 3 k_x^2 - 2 i k_x k_y + k_y^2 - 4 k_z^2 ) \epsilon _z \epsilon _y^* \\ \nonumber&+ 8 k_z (k_y + i k_x) \epsilon _x \epsilon _y^* -( k_x^2+2 i k_x k_y + 3 k_y^2 - 4 k_z^2 ) \epsilon _x^* \epsilon _z -8 k_z ( k_y + i k_x ) \epsilon _y \epsilon _x^* \\ \nonumber&+ \epsilon _z^* \big [ k_x^2 (\epsilon _x - 3 i \epsilon _y ) +2 i k_x k_y ( \epsilon _x + i \epsilon _y ) + k_y^2 ( 3 \epsilon _x - i \epsilon _y ) - 4 k_z^2 ( \epsilon _x - i \epsilon _y) \big ] \Big ) \\ \nonumber&\times \Big ( 2 \langle I|r^2 C^{*}_{2,0} G^{+} r^2 C_{2,1} |I\rangle +2 \langle I|r^2 C^{*}_{2,-1} G^{+} r^2 C_{2,0} |I\rangle \\&- \sqrt{6} \langle I|r^2 C^{*}_{2,1} G^{+} r^2 C_{2,2} |I\rangle - \sqrt{6} \langle I|r^2 C^{*}_{2,-2} G^{+} r^2 C_{2,-1} |I\rangle \Big ) \bigg ] \;, \end{aligned}$$
(4.69)
$$\begin{aligned} \nonumber \sigma (3,-1)= & {} \pi ^2 \alpha \hbar \omega k^2 \times \mathrm{\mathfrak {I}} \bigg [ \frac{1}{40 \sqrt{6}} \Big ( i ( 3 k_x^2 + 2 i k_x k_y + k_y^2 - 4 k_z^2 ) \epsilon _y^* \epsilon _z\\ \nonumber&+ 8 i k_z (k_x + i k_y) \epsilon _x \epsilon _y^* + ( k_x^2 - 2 i k_x k_y + 3 k_y^2 - 4 k_z^2 )\epsilon _x^* \epsilon _z + 8 k_z ( k_y - i k_x ) \epsilon _x^* \epsilon _y \\ \nonumber&+ \epsilon _z^* \big [ k_x^2 (-(\epsilon _x + 3 i \epsilon _y) ) + 2 k_x k_y (\epsilon _y + i \epsilon _x) - k_y^2 (3 \epsilon _x + i \epsilon _y ) + 4 k_z^2 (\epsilon _x + i \epsilon _y) \big ] \Big ) \\ \nonumber&\times \Big ( 2 \langle I|r^2 C^{*}_{2,0} G^{+} r^2 C_{2,-1} |I\rangle +2 \langle I|r^2 C^{*}_{2,1} G^{+} r^2 C_{2,0} |I\rangle \\&- \sqrt{6} \langle I|r^2 C^{*}_{2,-1} G^{+} r^2 C_{2,-2} |I\rangle - \sqrt{6} \langle I|r^2 C^{*}_{2,2} G^{+} r^2 C_{2,1} |I\rangle \Big ) \bigg ] \;, \end{aligned}$$
(4.70)
$$\begin{aligned} \nonumber \sigma (3,2)= & {} \pi ^2 \alpha \hbar \omega k^2 \times \mathrm{Im} \bigg [ \frac{1}{4 \sqrt{6}} \Big ( k_y + i k_x \Big ) \Big ( \epsilon _x^* (k_x \epsilon _y - i k_y \epsilon _y + 2 i k_z \epsilon _z ) \\ \nonumber&+ \epsilon _y^* (- k_x \epsilon _x + i k_y \epsilon _x + 2 k_z \epsilon _z) -2 i k_z \epsilon _z^* (\epsilon _x - i \epsilon _y) \Big )\\&\times \Big ( \langle I|r^2 C^{*}_{2,0} G^{+} r^2 C_{2,2} |I\rangle - \langle I|r^2 C^{*}_{2,-2} G^{+} r^2 C_{2,0} |I\rangle \Big ) \bigg ] \;, \end{aligned}$$
(4.71)
$$\begin{aligned} \nonumber \sigma (3,-2)= & {} \pi ^2 \alpha \hbar \omega k^2 \times \mathrm{Im } \bigg [ \frac{1}{4 \sqrt{6}} \Big ( ik_y + k_x \Big ) \Big ( \epsilon _x^* (i k_x \epsilon _y - k_y \epsilon _y + 2 k_z \epsilon _z ) \\ \nonumber&+ \epsilon _y^* (-i k_x \epsilon _x + k_y \epsilon _x + 2 i k_z \epsilon _z)- 2 k_z \epsilon _z^* (\epsilon _x +i \epsilon _y) \Big ) \\&\times \Big ( \langle I|r^2 C^{*}_{2,2} G^{+} r^2 C_{2,0} |I\rangle -\langle I|r^2 C^{*}_{2,0} G^{+} r^2 C_{2,-2} |I\rangle \Big ) \bigg ] \;,\quad \end{aligned}$$
(4.72)
$$\begin{aligned} \nonumber \sigma (3,3)= & {} \pi ^2 \alpha \hbar \omega k^2 \times \mathrm{Im} \bigg [ \frac{1}{8} \Big ( (k_x - i k_y)^2 \Big ) \Big ( -\epsilon _z^* (\epsilon _x -i \epsilon _y )+ \epsilon _z( \epsilon _x^*- i\epsilon _y^*) \Big ) \\&\times \Big ( -\langle I|r^2 C^{*}_{2,-1} G^{+} r^2 C_{2,2} |I\rangle - \langle I|r^2 C^{*}_{2,-2} G^{+} r^2 C_{2,1} |I\rangle \Big ) \bigg ] \,,\quad \end{aligned}$$
(4.73)
$$\begin{aligned} \nonumber \sigma (3,-3)= & {} \pi ^2 \alpha \hbar \omega k^2 \times \mathbf{Im} \bigg [ \frac{1}{8} \Big ( (k_x + i k_y)^2 \Big ) \Big ( -\epsilon _z^* (\epsilon _x +i \epsilon _y )+ \epsilon _z( \epsilon _x^*+ i\epsilon _y^*) \Big ) \\&\times \Big ( \langle I|r^2 C^{*}_{2,1} G^{+} r^2 C_{2,-2} |I\rangle + \langle I|r^2 C^{*}_{2,2} G^{+} r^2 C_{2,-1} |I\rangle \Big )\bigg ]\;. \end{aligned}$$
(4.74)
4.2.7 Term \(a=4\)
The term \(a=4\) consists of nine components, namely, \(\sigma (4,0)\), \(\sigma (4,1)\), \(\sigma (4,-1)\), \(\sigma (4,2)\), \(\sigma (4,-2)\), \(\sigma (4,3)\), \(\sigma (4,-3)\), \(\sigma (4,4)\), and \(\sigma (4,-4)\)
$$\begin{aligned} \nonumber \sigma (4,0)= & {} \pi ^2 \alpha \hbar \omega k^2 \times \mathrm{Im } \bigg [ \frac{1}{140} \Big ( [3 k_x^2 \epsilon _x + k_y^2 \epsilon _x - 4 k_z^2 \epsilon _x +2 k_x k_y \epsilon _y - 8 k_x k_z \epsilon _z] \epsilon _x^* \\ \nonumber&+ [ k_x^2 \epsilon _y + 3 k_y^2 \epsilon _y - 4 k_z^2 \epsilon _y + 2 k_x k_y \epsilon _x - 8 k_y k_z \epsilon _z ] \epsilon _y^* \\ \nonumber&-4 \epsilon _z^* [\epsilon _z (k_x^2+k_y^2 - 2 k_z^2 )+ 2 k_z (k_x \epsilon _x + k_y \epsilon _y) ] \Big ) \\ \nonumber&\times \Big ( 6 \langle I|r^2 C^{*}_{2,0} G^{+} r^2 C_{2,0} |I\rangle - 4 \langle I|r^2 C^{*}_{2,1} G^{+} r^2 C_{2,1} |I\rangle \\ \nonumber&-4 \langle I|r^2 C^{*}_{2,-1} G^{+} r^2 C_{2,-1} |I\rangle + \langle I|r^2 C^{*}_{2,2} G^{+} r^2 C_{2,2} |I\rangle \\&+ \langle I|r^2 C^{*}_{2,-2} G^{+} r^2 C_{2,-2} |I\rangle \Big ) \Big ] \;, \end{aligned}$$
(4.75)
$$\begin{aligned} \nonumber \sigma (4,1)= & {} \pi ^2 \alpha \hbar \omega k^2 \times \mathrm{Im} \bigg [ \frac{1}{56} \Big ( \epsilon _x^* \big [ 3 k_x^2 \epsilon _z - 2 i k_x (k_y \epsilon _z + 3 i k_z \epsilon _x + k_z \epsilon _y ) + \epsilon _z (k_y^2 - 4 k_z^2 ) \\ \nonumber&+ 2 k_y k_z (\epsilon _y - i \epsilon _x) \big ]-i \epsilon _y^* \big [ \epsilon _z (k_x^2 + 2 i k_x k_y + 3 k_y^2 - 4 k_z^2 ) \\ \nonumber&+ 2 k_z (k_x \epsilon _x + i k_x \epsilon _y + i k_y \epsilon _x + 3 k_y \epsilon _y) \big ] + \epsilon _z^* \big [ k_x^2 (3 \epsilon _x - i \epsilon _y) \\ \nonumber&+ 2 k_x k_y (\epsilon _y - i \epsilon _x) - 8 k_x k_z \epsilon _z + k_y^2 (\epsilon _x - 3 i \epsilon _y) + 8 i k_y k_z \epsilon _z - 4 k_z^2 (\epsilon _x - i \epsilon _y) \big ] \Big )\\ \nonumber&\times \Big ( \sqrt{6} \langle I|r^2 C^{*}_{2,0} G^{+} r^2 C_{2,1} |I\rangle -\sqrt{6} \langle I|r^2 C^{*}_{2,-1} G^{+} r^2 C_{2,0} |I\rangle \\&\langle I|r^2 C^{*}_{2,-2} G^{+} r^2 C_{2,-1} |I\rangle - \langle I|r^2 C^{*}_{2,1} G^{+} r^2 C_{2,2} |I\rangle \Big ) \bigg ] \;, \end{aligned}$$
(4.76)
$$\begin{aligned} \nonumber \sigma (4,-1)= & {} \pi ^2 \alpha \hbar \omega k^2 \times \mathrm{Im} \bigg [ \frac{-1}{56} \Big ( \epsilon _x^* \big [ \epsilon _z (3 k_x^2+2 i k_x k_y + k_y^2 - 4 k_z^2 ) \\ \nonumber&+ 2 k_z (3 k_x \epsilon _x + i k_x \epsilon _y + i k_y \epsilon _x + k_y \epsilon _y ) \big ] + \epsilon _y^* \big [ i \epsilon _z (k_x^2 - 2 i k_x k_y + 3 k_y^2 - 4 k_z^2 ) \\ \nonumber&+ 2 k_z (i k_x \epsilon _x + k_x \epsilon _y + k_y \epsilon _x + 3 i k_y \epsilon _y) \big ] +\epsilon _z^* \big [ k_x^2 (3 \epsilon _x + i \epsilon _y) \\ \nonumber&+ 2 k_x k_y (\epsilon _y + i \epsilon _x) - 8 k_x k_z \epsilon _z + k_y^2 ( \epsilon _x + 3 i \epsilon _y) - 8 i k_y k_z \epsilon _z -4 k_z^2 (\epsilon _x + i \epsilon _y ) \big ] \Big ) \\ \nonumber&\times \Bigg ( \sqrt{6} \langle I|r^2 C^{*}_{2,0} G^{+} r^2 C_{2,-1} |I\rangle -\sqrt{6} \langle I|r^2 C^{*}_{2,1} G^{+} r^2 C_{2,0} |I\rangle \\&\langle I|r^2 C^{*}_{2,2} G^{+} r^2 C_{2,1} |I\rangle - \langle I|r^2 C^{*}_{2,-1} G^{+} r^2 C_{2,-2} |I\rangle \Big ) \bigg ] \;, \end{aligned}$$
(4.77)
$$\begin{aligned} \nonumber \sigma (4,2)= & {} \pi ^2 \alpha \hbar \omega k^2 \times \mathrm{Im} \bigg [\frac{1}{56} \Big ( -(k_x - i k_y) (\epsilon _x^* - i \epsilon _y^* ) (k_x \epsilon _x + k_y \epsilon _y -2 k_z \epsilon _z ) \\ \nonumber&+2 [ \epsilon _z ( k_x - i k_y) + k_z ( \epsilon _x - i \epsilon _y ) ] [ \epsilon _z^* ( k_x - i k_y) + k_z \epsilon _x^* - i k_z \epsilon _y^* ] \\ \nonumber&-( k_x - i k_y) ( \epsilon _x - i \epsilon _y ) ( k_x \epsilon _x^*+ k_y \epsilon _y^* - 2 k_z \epsilon _z^* ) \Big ) \\ \nonumber&\times \Big ( \sqrt{6} \langle I|r^2 C^{*}_{2,0} G^{+} r^2 C_{2,2} |I\rangle +\sqrt{6} \langle I|r^2 C^{*}_{2,-2} G^{+} r^2 C_{2,0} |I\rangle \\&- 4 \langle I|r^2 C^{*}_{2,-1} G^{+} r^2 C_{2,1} |I\rangle \Big ) \bigg ] \;, \end{aligned}$$
(4.78)
$$\begin{aligned} \nonumber \sigma (4,-2)= & {} \pi ^2 \alpha \hbar \omega k^2 \times \mathrm{Im} \bigg [ \frac{1}{56} \Big ( -(k_x + i k_y) (\epsilon _x^*+ i \epsilon _y^* ) ( k_x \epsilon _x + k_y \epsilon _y -2 k_z \epsilon _z )\\ \nonumber&+2 [ \epsilon _z ( k_x + i k_y )+ k_z ( \epsilon _x + i \epsilon _y ) ] [ \epsilon _z ^* (k_x + i k_y )+ k_z \epsilon _x^*+i k_z \epsilon _y^* ] \\ \nonumber&-( k_x + i k_y ) (\epsilon _x + i \epsilon _y ) (k_x \epsilon _x^*+ k_y \epsilon _y^* - 2 k_z \epsilon _z^* ) \Big ) \\ \nonumber&\times \Big ( \sqrt{6} \langle I|r^2 C^{*}_{2,0} G^{+} r^2 C_{2,-2} |I\rangle +\sqrt{6} \langle I|r^2 C^{*}_{2,2} G^{+} r^2 C_{2,0} |I\rangle \\&- 4 \langle I|r^2 C^{*}_{2,1} G^{+} r^2 C_{2,-1} |I\rangle \Big ) \bigg ] \;, \end{aligned}$$
(4.79)
$$\begin{aligned} \nonumber \sigma (4,3)= & {} \pi ^2 \alpha \hbar \omega k^2 \times \mathrm{Im} \bigg [ \frac{-1}{8} \Big ( k_x - i k_y \Big ) \Big ( (\epsilon _x^*- i \epsilon _y^*) \big ( \epsilon _z ( k_x - i k_y ) \\ \nonumber&+ 2 k_z (\epsilon _x - i \epsilon _y) \big ) + \epsilon _z^* (k_x - i k_y ) (\epsilon _x - i \epsilon _y) \Big ) \\&\times \Big ( \langle I|r^2 C^{*}_{2,-2} G^{+} r^2 C_{2,1} |I\rangle -\langle I|r^2 C^{*}_{2,-1} G^{+} r^2 C_{2,2} |I\rangle \Big ) \bigg ] \;, \end{aligned}$$
(4.80)
$$\begin{aligned} \nonumber \sigma (4,-3)= & {} \pi ^2 \alpha \hbar \omega k^2 \times \mathrm{Im } \bigg [ \frac{1}{8} \Big ( k_x + i k_y \Big ) \Big ( (\epsilon _x^*+ i \epsilon _y^*) (\epsilon _z (k_x + i k_y ) \\ \nonumber&+ 2 k_z (\epsilon _x + i \epsilon _y)) + \epsilon _z^* (k_x + i k_y ) (\epsilon _x + i \epsilon _y) \Big ) \\&\times \Big ( \langle I|r^2 C^{*}_{2,2} G^{+} r^2 C_{2,-1} |I\rangle -\langle I|r^2 C^{*}_{2,1} G^{+} r^2 C_{2,-2} |I\rangle \Big ) \bigg ] \,,\; \end{aligned}$$
(4.81)
$$\begin{aligned} \nonumber \sigma (4,4)= & {} \pi ^2 \alpha \hbar \omega k^2 \times \mathrm{Im} \bigg [ \frac{1}{4} \Big ( (k_x - i k_y)^2 (\epsilon _x - i \epsilon _y) (\epsilon _x^* - i \epsilon _y ^*) \Big ) \\&\times \Big ( \langle I|r^2 C^{*}_{2,-2} G^{+} r^2 C_{2,2} |I\rangle \Big ) \bigg ] \;, \end{aligned}$$
(4.82)
$$\begin{aligned} \nonumber \sigma (4,-4)= & {} \pi ^2 \alpha \hbar \omega k^2 \times \mathrm{Im} \Big [ \frac{1}{4} \Big ( (k_x + i k_y)^2 (\epsilon _x + i \epsilon _y) (\epsilon _x^* + i \epsilon _y ^*) \Big ) \\&\times \Big ( \langle I|r^2 C^{*}_{2,2} G^{+} r^2 C_{2,-2} |I\rangle \Big ) \bigg ] \;. \end{aligned}$$
(4.83)
In the most general case, the quadrupole XAS signal can be described using 25 fundamental spectra as given in (4.59)–(4.83). Although the expression seems at first sight complicated, major simplifications and intuitive conclusions can be made when one considers the symmetry of the absorbing system. We shall illustrate this in the following section.
4.2.7.1 Case Study of a \(d^9\) Ion
As an example, we will study again a \(d^9\) ion in different local symmetries.
Spherical Symmetry
We shall start with an isolated \(d^9\) ion (i.e., spherical symmetry). The conductivity tensor of such an ion is shown in Fig. 4.11. The tensor consists of 25 elements that form the 25 fundamental spectra through appropriate linear combinations. Only the five diagonal elements are non-zero in this case and are all equal. This means that the only possibly active fundamental spectra are of the type \(\sigma (a,0)\) with \(a=0,1,2,3,4\). However, because all the diagonal elements are equal, only the fundamental spectrum \(\sigma (0,0)\) is non-zero. This fundamental spectrum has no angular dependence, hence this system is isotropic. It is not a surprising result that for a spherical system, no angular dependence would be observed.
Octahedral Crystal Field
We shall examine next a \(d^9\) ion in \(O_h\) symmetry. The conductivity tensor of this ion is shown in Fig. 4.12. Several differences can be directly seen in comparison with the previous case:
Let us consider the first point. This mixing leads to the same form of eigenvectors than for obtained for the 3d orbitals (\(Y_{2,m}\)) for an \(O_h\) crystal field [see (4.23)]. Indeed, this is exactly the same problem. In order to obtain only diagonal elements, one can apply the following rotation (4.84):
$$\begin{aligned} Rot= \begin{bmatrix} \frac{1}{\sqrt{2}} &{} 0 &{} 0 &{} 0 &{} \frac{1}{\sqrt{2}} \\ 0 &{} 0 &{} 1 &{} 0 &{} 0 \\ 0 &{} \frac{i}{\sqrt{2}} &{} 0 &{} \frac{i}{\sqrt{2}} &{} 0 \\ 0 &{} \frac{1}{\sqrt{2}} &{} 0 &{} -\frac{1}{\sqrt{2}} &{} 1 \\ \frac{i}{\sqrt{2}} &{} 0&{} 0 &{} 0 &{} -\frac{i}{\sqrt{2}} \\ \end{bmatrix}\;. \end{aligned}$$
(4.84)
The rotated conductivity tensor is shown in Fig. 4.13. Only diagonal elements exist now. These are separated into two types: three (\(t_{2g}\)) that are equal with transition operators, \(C^{2}_{xy}, C^{2}_{yz}\) and \(C^{2}_{xz}\), and two (\(e_g\)) that are equal with transition operators, \(C^{2}_{z^2}\) and \(C^{2}_{x^2-y^2}\).
Five fundamental spectra come into play, namely, \(\sigma (0,0)\), \(\sigma (2,0)\), \(\sigma (4,0)\), \(\sigma (4,4)\), and \(\sigma (4,-4)\) as shown in Fig. 4.14. The \(O_h\) symmetry implies that R(2, 0) is always equal to zero as confirmed by the calculation. In addition, \(R(4,4)=R(4,-4)\) and are proportional to R(4, 0) as can be seen from (4.75), (4.82), and (4.83). Therefore, as can be expected from group theory, only two fundamental spectra are required to fully describe the system.
Let us investigate the angular dependence of a quadrupole transition in an \(O_h\) crystal field considering two scattering geometries. In the first geometry, the wave vector (\(\varvec{k}\)) is aligned parallel to the [100] direction and the polarization (\(\varvec{\epsilon }\)) is rotated in the \(z-y\)-plane as illustrated in the right panel of Fig. 4.16. Despite the presence of non-isotropic fundamental spectra [\(\sigma (4,0)\), \(\sigma (4,4)\), and \(\sigma (4,-4)\)], the XAS cross-section is constant in these settings as shown in Fig. 4.16a. In the second geometry we have \(\varvec{k} \parallel [\frac{1}{\sqrt{2}}\frac{1}{\sqrt{2}} 0]\) and \(\varvec{\epsilon }\) is rotated about the \([\frac{1}{\sqrt{2}}\frac{1}{\sqrt{2}}0]\) axis as depicted in Fig. 4.16b. The XAS cross section shows a clear twofold angular dependence in these settings.
It is interesting to discuss the difference between both scattering geometries and the reason behind the absence of angular dependence in the first case. In Fig. 4.15, we plot the angular dependence of the light tensor [E(4, 0), E(4, 4), and \(E(4,-4)\)] for both cases. The contribution of the term E(4, 0) is 90\(^\circ \) out-of-phase with respect to the terms E(4, 4) and \(E(4,-4)\) for the first scattering geometry [see panel (a) of Fig. 4.15]. The \(O_h\) symmetry implies that the ratio between the R(4, 0) and the \(R(4,\pm 4)\) terms leads to a constant XAS cross section. On the other hand, as depicted in Fig. 4.15b, all terms are in phase which leads to an angular dependent XAS.
An important distinction between the dipole and quadrupole transitions can be concluded from these examples. While a dipole transition in an \(O_h\) system exhibits no angular dependence, the quadrupole transition can show angular dependences when the scattering geometry is appropriately chosen. This difference holds because a quadrupole transition has higher multipole contributions that give rise to angular dependences not observable for dipole transitions.
Tetragonal Crystal Field
The effect of reducing the crystal field symmetry to tetragonal by applying a compressive distortion along the z-axis can be directly seen in the angular dependence of the quadrupole transition. In contrast to the case of \(O_h\) crystal field (see Fig. 4.16a), now rotating \(\varvec{\epsilon }\) about the [100] axis shows angular dependence because the z- and y-axes are not equivalent (see Fig. 4.17a). However, as could be expected, rotating \(\varvec{\epsilon }\) about the [001] axis shows no angular dependence (see Fig. 4.17b). In this projection, the system is effective of \(O_h\) symmetry.
Octahedral Crystal Field with Exchange Field \(\parallel \mathbf {z}\)
Consider a magnetic \(3d^9\) ion where the crystal field is \(O_h\) with an exchange field aligned along the z-axis. Seven fundamental spectra come into play, namely, R(0, 0), R(1, 0), R(2, 0), R(3, 0), R(4, 0), \(R(4,-4)\), and R(4, 4). We have shown previously that for \(O_h\) symmetry, when \(\varvec{k}\) is aligned parallel to the [100] direction, and \(\varvec{\epsilon }\) is rotated in the \(z-y\)-plane, angular dependence is observed (see Fig. 4.16a). Repeating the same calculation with an exchange field aligned along the z-axis leads to an angular dependent XAS as shown in Fig. 4.18a. The exchange field reduces the symmetry along the z-axis. The effects of rotating the incident linear polarization in the \(z-y\)-plane on the fundamental cross sections are shown in Fig. 4.19. Only the terms \(\sigma (2,0)\), \(\sigma (4,0)\), \(\sigma (4,4)\), and \(\sigma (4,-4)\) are non-zero and exhibit a twofold angular dependence. However, one notes that \(\sigma (4,0)\) is 90\(^\circ \) shifted with respect to \(\sigma (4,4)\) and \(\sigma (4,-4)\) which implies that the angular dependence of the XAS will be small. In comparison, no angular dependence is observed when \(\varvec{\epsilon }\) is rotated in the \(x-y\)-plane as shown in Fig. 4.18b.
Finally, the exchange field can give rise to interesting combinations of structural and magnetic dichroism effects. Consider aligning \(\varvec{k} \parallel [001]\) and measuring XAS using circular polarized light. Rotating the system about the [100] axis gives rise to unconventional angular dependent XAS as shown in Fig. 4.20. This angular dependence arises from a combination of structural and magnetic dichroism effects.
The magnetic contribution arises from the circular dichroism active terms which are \(\sigma (1,0)\) and \(\sigma (3,0)\) (see Fig. 4.21a). On the other hand, the structural contribution arises from the linear dichroism active terms which are \(\sigma (4,0)\), \(\sigma (4,4)\), and \(\sigma (4,-4)\) (see Fig. 4.21b). In addition, these terms contribute weakly to the magnetic dichroism. This is illustrated in Fig. 4.22 where in panel (a) we show the structural dichroism signal for the same system without an exchange field and in panel (b) the difference between the case with exchange versus without exchange. The magnetic contribution is about three orders of magnitude less than the structural contribution for this system.