Skip to main content

PerfectO: An Online Toolkit for Improving Quality, Accessibility, and Classification of Domain-Based Ontologies

  • Chapter
  • First Online:
Semantic IoT: Theory and Applications

Part of the book series: Studies in Computational Intelligence ((SCI,volume 941))

Abstract

Sensor-based applications are increasingly present in our everyday life. Due to the enormous quantity of sensor data produced, interpreting data and building interoperable sensor-based applications is needed. There are several problems to address the heterogeneity of (1) data format, (2) languages to describe sensor metadata, (3) models for structuring sensor datasets, (4) reasoning mechanisms and rule languages to interpret sensor datasets, and (5) applications. Semantic Web technologies (a.k.a, knowledge graphs), are immersed in an increasing number of online activities we perform today (e.g., search engines for gathering information). There is a need to find better ways to share data and distribute more meaningful and more accurate information. Innovative methodologies are needed to link and associate the data from different domains to improve knowledge discovery. Semantic knowledge graphs, made of datasets and ontologies, are intended to describe and organize heterogeneous data explicitly. If an ontology is widely used to structure data of a particular domain, the accessibility and the efficiency in sharing and reusing that information will increase. For this reason, we focused on the ontology quality used when building sensor-based applications. We designed PerfectO, a Knowledge Directory Services tool, focusing on ontology best practices, which: (1) improves knowledge quality, (2) leverages usability, accessibility, and classification of the information, (3) enhances engineering experience, and (4) promotes engineering best practices. PerfectO implementation is applied to the Internet of Things (IoT) domain because it covers more than 20 application domains (e.g., healthcare, smart building, smart farm) that use sensors. PerfectO enhances knowledge expertise quality implemented within any ontologies as demonstrated with the Linked Open Vocabularies for IoT (LOV4IoT) ontology catalog.

Thanks to the Linked Open Vocabularies (LOV) team for sharing their expertise regarding the usage of validation tools.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Notes

  1. 1.

    http://fiesta-iot.eu/.

  2. 2.

    “Thanks to Amelie Gyrard for the help on the project”.

  3. 3.

    https://ec.europa.eu/digital-single-market/en/alliance-internet-things-innovation-aioti.

  4. 4.

    http://www.neon-project.org/.

  5. 5.

    http://perfectsemanticweb.appspot.com/?p=ontology_sota.

  6. 6.

    http://perfectsemanticweb.appspot.com/perfecto/statusTool/?url={url}.

  7. 7.

    http://purl.org/perfecto.

  8. 8.

    https://www.cs.ox.ac.uk/isg/projects/LogMap/.

  9. 9.

    http://perfectsemanticweb.appspot.com/?p=ontology_sota#div_ontology_documentation_mindmap.

  10. 10.

    http://perfectsemanticweb.appspot.com/?p=ontologyValidationLOV4IoT.

  11. 11.

    http://purl.org/lov4iot-dataset.

  12. 12.

    http://perfectsemanticweb.appspot.com/?p=ontologyValidation.

  13. 13.

    http://perfectsemanticweb.appspot.com/?p=evaluation_lov4iot_perfecto.

  14. 14.

    http://perfectsemanticweb.appspot.com/?p=ontology_sota.

  15. 15.

    http://perfectsemanticweb.appspot.com/?p=updateCatalogueForm.

References

  1. Paulheim, H.: Knowledge graph refinement: a survey of approaches and evaluation methods. Semant. Web 8(3), 489–508 (2017)

    Google Scholar 

  2. Bizer, C., Heath, T., Berners-Lee, T.: Linked data-the story so far. Int. J. Semant. Web Inf. Syst. (2009)

    Google Scholar 

  3. Gruber, T.R.: Toward principles for the design of ontologies used for knowledge sharing? Int. J. Hum.-Comput. Stud. (1995)

    Google Scholar 

  4. Vandenbussche, P.Y., Atemezing, G.A., Poveda-Villalón, M., Vatant, B.: Linked Open Vocabularies (LOV): a gateway to reusable semantic vocabularies on the Web. Semant. Web J. (2016)

    Google Scholar 

  5. Gyrard, A., Zimmermann, A., Sheth, A.: Building IoT based applications for Smart Cities: how can ontology catalogs help? IEEE Internet Things J. (2018)

    Google Scholar 

  6. Gyrard, A., Bonnet, C., Boudaoud, K., Serrano, M.: LOV4IoT: a second life for ontology-based domain knowledge to build Semantic Web of Things applications. In: IEEE International Conference on Future Internet of Things and Cloud (2016)

    Google Scholar 

  7. Gyrard, A., Atemezing, G., Bonnet, C., Boudaoud, K., Serrano, M.: Reusing and unifying background knowledge for internet of things with LOV4IoT. In: IEEE International Conference on Future Internet of Things and Cloud (2016)

    Google Scholar 

  8. Zaveri, A., Rula, A., Maurino, A., Pietrobon, R., Lehmann, J., Auer, S.: Quality assessment for linked data: a survey. Semant. Web J. 7(1):63–93 (2015)

    Google Scholar 

  9. McDaniel, M., Storey, V.C., Sugumaran, V.: Assessing the quality of domain ontologies: metrics and an automated ranking system. Data Knowl. Eng. 115, 32–47 (2018)

    Google Scholar 

  10. Raad, J., Cruz, C.: A survey on ontology evaluation methods. In: KEOD (2015)

    Google Scholar 

  11. Hlomani, H., Stacey, D.: Approaches, methods, metrics, measures, and subjectivity in ontology evaluation: a survey. Semant. Web J. (2014)

    Google Scholar 

  12. García, J., Jose’García-Peñalvo, F., Therón, R.: A survey on ontology metrics. In: World Summit on Knowledge Society. Springer (2010)

    Google Scholar 

  13. Fernández-López, M., Poveda-Villalón, M., Suárez-Figueroa, M.C., Gómez-Pérez, A.: Why are ontologies not reused across the same domain? J. Web Semant. (2018)

    Google Scholar 

  14. Rus, I., Lindvall, M.: Knowledge management in software engineering. IEEE Softw. J. 19, 26–38 (2002)

    Google Scholar 

  15. Serrano, M., Barnaghi, P., Carrez, F., Cousin, P., Vermesan, O., Friess, P.: Internet of Things IoT Semantic Interoperability: Research Challenges, Best Practices, Recommendations and Next Steps. Technical report, IERC AC4 (2015)

    Google Scholar 

  16. Agarwal, R., Fernandez, D.G., Elsaleh, T., Gyrard, A., Lanza, J., Sanchez, L., Georgantas, N., Issarny, V.: Unified IoT ontology to enable interoperability and federation of testbeds. In: IEEE World Forum on Internet of Things (2016)

    Google Scholar 

  17. FIESTA IoT Consortium, E.: FIESTA-IoT project Deliverable 6.1 Design of Global Market Confidence Programme on IoT interoperability (2016)

    Google Scholar 

  18. Gyrard, A., Serrano, M., Atemezing, G.: Semantic web methodologies, best practices and ontology engineering applied to internet of things. In: IEEE World Forum on Internet of Things (2015)

    Google Scholar 

  19. Suárez-Figueroa, M.C.: NeOn Methodology for Building Ontology Networks: Specification, Scheduling and Reuse. PhD thesis, Universidad Politecnica de Madrid, Facultad de Informatica, Departamento de Inteligencia Artificial (2010)

    Google Scholar 

  20. Noy, N.F., McGuinness, D.L.: Ontology Development 101: A Guide to Creating your First Ontology (2001)

    Google Scholar 

  21. Zaslavsky, A., Perera, C., Georgakopoulos, D.: Sensing as a Service and Big Data. arXiv preprint arXiv:1301.0159 (2013)

  22. Gyrard, A., Serrano, M.: Connected Smart Cities: interoperability with SEG 3.0 for the Internet of Things. In: 30th IEEE International Conference on Advanced Information Networking and Applications Workshops (2016)

    Google Scholar 

  23. Rezaei, R., Chiew, T.K., Lee, S.P., Aliee, Z.S.: Interoperability evaluation models: a systematic review. Comput. Ind. (2014)

    Google Scholar 

  24. Serrano, M., Barnaghi, P., Cousin, P.: Semantic Interoperability: Research Challenges, Best Practices, Solutions and Next Steps, IERC AC4 Manifesto. Technical report, European Research Cluster on the Internet of Things, AC4 (2014)

    Google Scholar 

  25. Gyrard, A., Bonnet, C.: Semantic Web best practices: Semantic Web Guidelines for domain knowledge interoperability to build the Semantic Web of Things. OneM2M International Standard, Management, Abstraction and Semantics (MAS) Working Group 5, April 2014, Eurecom (2014)

    Google Scholar 

  26. Murdock, P., Bassbouss, L., Bauer, M., Alaya, M.B., Bhowmik, R., Brett, P., Chakraborty, R.N., Dadas, M., Davies, J., Diab, W., et al.: Semantic Interoperability for the Web of Things (2016)

    Google Scholar 

  27. Bauer, M., Baqa, H., Bilbao, S., Corchero, A., Daniele, L., Esnaola, I., Fernandez, I., Franberg, O., Garcia-Castro, R., Girod-Genet, M., Guillemin, P., Gyrard, A., Kaed, C.E., Kung, A., Lee, J., Lefrançois, M., Li, W., Raggett, D., Wetterwald, M.: Semantic IoT Solutions—A Developer Perspective (Semantic Interoperability White Paper Part I) (2019)

    Google Scholar 

  28. Bauer, M., Baqa, H., Bilbao, S., Corchero, A., Daniele, L., Esnaola, I., Fernandez, I., Franberg, O., Garcia-Castro, R., Girod-Genet, M., Guillemin, P., Gyrard, A., Kaed, C.E., Kung, A., Lee, J., Lefrançois, M., Li, W., Raggett, D., Wetterwald, M.: Towards semantic interoperability standards based on ontologies (Semantic Interoperability White Paper Part II) (2019)

    Google Scholar 

  29. Grüninger, M., Fox, M.S.: Methodology for the Design and Evaluation of Ontologies (1995)

    Google Scholar 

  30. Ma, X., Fu, L., West, P., Fox, P.: Ontology usability scale: context-aware metrics for the effectiveness, efficiency and satisfaction of ontology uses. Data Sci. J. (2018)

    Google Scholar 

  31. Corcho, O., Fernández-López, M., Gómez-Pérez, A.: Methodologies, tools and languages for building ontologies. Where is their meeting point? Data Knowl. Eng. J. 46, 41–64 (2003)

    Google Scholar 

  32. Suarez-Figueroa, M.C., Gomez-Perez, A., Fernandez-Lopez, M.: The NeOn methodology for ontology engineering. In: Ontology Engineering in a Networked World. Springer (2012)

    Google Scholar 

  33. Staab, S., Studer, R.: Handbook on Ontologies. Springer, Heidelberg (2013)

    Google Scholar 

  34. Fernández-López, M., Gómez-Pérez, A., Juristo, N.: Methontology: From Ontological Art Towards Ontological Engineering (1997)

    Google Scholar 

  35. Hitzler, P., Gangemi, A., Janowicz, K.: Ontology Engineering with Ontology Design Patterns: Foundations and Applications. IOS Press (2016)

    Google Scholar 

  36. Poveda-Villalón, M., Gómez-Pérez, A., Suárez-Figueroa, M.C.: OOPS!(Ontology Pitfall Scanner!): an on-line tool for ontology evaluation. Int. J. Semant. Web Inf. Syst. (2014)

    Google Scholar 

  37. Duque-Ramos, A., Fernández-Breis, J.T., Iniesta, M., Dumontier, M., Aranguren, M.E., Schulz, S., Aussenac-Gilles, N., Stevens, R.: Evaluation of the oquare framework for ontology quality. Expert Syst. Appl. (2013)

    Google Scholar 

  38. Duque-Ramos, A., Fernández-Breis, J.T., Stevens, R., Aussenac-Gilles, N.: OQuaRE: a SQuaRE-based approach for evaluating the quality of ontologies. J. Res. Pract. Inf. Technol. (H Index=21) (2011)

    Google Scholar 

  39. Fernández, M., Overbeeke, C., Sabou, M., Motta, E.: What makes a good ontology? A case-study in fine-grained knowledge reuse. In: Asian Conference on The Semantic Web. Springer (2009)

    Google Scholar 

  40. Tartir, S., Arpinar, I.B.: Ontology evaluation and ranking using OntoQA. In: Semantic Computing, 2007. ICSC 2007. International Conference on. IEEE (2007)

    Google Scholar 

  41. Tartir, S., Arpinar, I.B., Moore, M., Sheth, A.P., Aleman-Meza, B.: OntoQA: Metric-Based Ontology Quality Analysis (2005)

    Google Scholar 

  42. Brank, J., Grobelnik, M., Mladenić, D.: A Survey of Ontology Evaluation Techniques (2005)

    Google Scholar 

  43. Burton-Jones, A., Storey, V.C., Sugumaran, V., Ahluwalia, P.: A semiotic metrics suite for assessing the quality of ontologies. Data Knowl. Eng. (2005)

    Google Scholar 

  44. Lozano-Tello, A., Gómez-Pérez, A.: OntoMetric: a method to choose the appropriate ontology. J. Database Manag.(2004)

    Google Scholar 

  45. Vrandečić, D.: Ontology evaluation. In: Handbook on Ontologies. Springer (2009)

    Google Scholar 

  46. Vrandečić, D., Gangemi, A.: Unit tests for ontologies. In: On the Move to Meaningful Internet Systems OTM Workshops. Springer (2006)

    Google Scholar 

  47. Gangemi, A., Presutti, V.: Ontology design patterns. In: Handbook on Ontologies. Springer (2009)

    Google Scholar 

  48. Bezerra, C., Freitas, F., Euzenat, J., Zimmermann, A.: ModOnto: a tool for modularizing ontologies. In: Proceedings of 3rd Workshop on ontologies and Their Applications (Wonto) (2008)

    Google Scholar 

  49. Garijo, D.: WIDOCO: a Wizard for Documenting Ontologies. In: International Semantic Web Conference (ISWC, A-rank Conference). Springer (2017)

    Google Scholar 

  50. Fielding, R.T., Taylor, R.N.: Principled design of the modern web architecture. ACM Trans. Internet Technol. (TOIT) (2002)

    Google Scholar 

  51. Kolbe, N., Kubler, S., Le Traon, Y.: Popularity-driven ontology ranking using qualitative features. In: International Semantic Web Conference. Springer (2019)

    Google Scholar 

  52. Olivares-Alarcos, A., Beßler, D., Khamis, A., Goncalves, P., Habib, M.K., Bermejo, J., Barreto, M., Diab, M., Rosell, J., Quintas, J., Olszewska, J., Nakawala, H., Pignaton, E., Gyrard, A., Borgo, S., Alenya, G., Beetz, M., Li, H.: A Review and Comparison of Ontology-Based Approaches to Robot Autonomy (2019)

    Google Scholar 

  53. Gyrard, A., Sheth, A.: IAMHAPPY: Towards An IoT Knowledge-Based Cross-Domain Well-Being Recommendation System for Everyday Happiness (2019)

    Google Scholar 

  54. Lecue, F., Tamma, V.: ISWC 2017 Resources Track: Author and Reviewer Instructions (2017)

    Google Scholar 

  55. Buzan, T., Buzan, B.: The Mind Map Book: How to Use Radiant Thinking to Maximize Your Brain’s Untapped Potential (1996)

    Google Scholar 

  56. McBride, B.: Jena: a semantic web toolkit. Internet Comput. 6, 55–59 (2002)

    Google Scholar 

  57. Tejo-Alonso, C., Berrueta, D., Polo, L., Fernández, S.: Metadata for web ontologies and rules: current practices and perspectives. In: Metadata and Semantic Research. Springer (2011)

    Google Scholar 

  58. Peroni, S., Shotton, D., Vitali, F.: Tools for the automatic generation of ontology documentation: a task-based evaluation. In: Computational Linguistics: Concepts, Methodologies, Tools, and Applications. IGI Global (2014)

    Google Scholar 

  59. Lohmann, S., Link, V., Marbach, E., Negru, S.: WebVOWL: Web-based visualization of ontologies. In: Knowledge Engineering and Knowledge Management. Springer (2014)

    Google Scholar 

  60. Berrueta, D., Fernández, S., Frade, I.: Cooking http content negotiation with vapour. In: 4th Workshop on Scripting for the Semantic Web (SFSW), Citeseer (2008)

    Google Scholar 

Web References

  1. Mother IoT device: https://sen.se/store/mother/

  2. Apple HealthKit: http://bit.ly/2xBFo8x

  3. IoT Cisco’s predictions:http://bit.ly/2JqJLdj

  4. Google Knowledge Graph: https://www.youtube.com/watch?v=mmQl6VGvX-c

  5. LOV4IoT: http://lov4iot.appspot.com/

  6. Jena Framework Documentation: https://jena.apache.org/

  7. Jena on GitHub: https://github.com/apache/jena

  8. Oops GUI: http://oops.linkeddata.es/

  9. Oops Web Service: http://oops-ws.oeg-upm.net/

  10. Triple Checker GUI: http://graphite.ecs.soton.ac.uk/checker/

  11. Triple Checker on GitHub: https://github.com/cgutteridge/TripleChecker

  12. LOV GUI: http://lov.okfn.org/dataset/lov/

  13. LOV Back End Java code on Github:https://github.com/pyvandenbussche/lovScripts

  14. LOV JavaScript code for the GUI on GitHub:https://github.com/pyvandenbussche/lov

  15. Parrot GUI: http://ontorule-project.eu/parrot/parrot

  16. Parrot Java code on Bitbucket: https://bitbucket.org/fundacionctic/parrot/wiki/Home

  17. LODE GUI: http://www.essepuntato.it/lode

  18. LODE Java code on GitHub: https://github.com/essepuntato/LODE

  19. WebVOWL GUI: http://vowl.visualdataweb.org/webvowl.html

  20. WebVOWL JavaScript code on GitHub: https://github.com/VisualDataWeb/WebVOWL

  21. Vapour GUI: http://linkeddata.uriburner.com:8000/vapour

  22. Vapour code on Bitbucket: https://bitbucket.org/fundacionctic/vapour/wiki/Home

  23. Vapour JavaScript API: http://vapour.sourceforge.net/api/

  24. OWL Manchester GUI: http://visualdataweb.de/validator/

  25. NeON ontology methodology: http://neon-toolkit.org/

  26. OQuaRE ontology quality tool: http://miuras.inf.um.es:9080/oqmodelsliteclient/

  27. Linked Data blog: http://linkeddata.org/home

  28. Semantic Web Best Practices for Dummies Documentation: http://bit.ly/2XB9jsa

  29. Slides step-by-step tutorial to improve the ontology quality, dissemination, reuse, etc. Semantic Web Best Practices: https://goo.gl/Rg4cGr

  30. Domain Ontology Ranking System (DoORS) prototype: https://owlparser.herokuapp.com/

  31. Ontology Design Patterns (ODPs) wiki: http://ontologydesignpatterns.org/

Download references

Acknowledgements

This work has partially received funding from the European Union’s Horizon 2020 research and innovation programme under grant agreement No 857237 (Interconnect), Science Foundation Ireland (SFI) under Grant Number SFI/12/RC/2289, Insight Centre for Data Analytics and H2020 FIESTA-IoT-CNECT-ICT-643943. The opinions expressed are those of the authors and do not reflect those of the sponsors.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Amélie Gyrard .

Editor information

Editors and Affiliations

7 Appendix

7 Appendix

1.1 7.1 Catalogs of Tools

The PerfectO web site provides the Catalogs of tools menu (depicted in Fig. 8) to easily give access to software URLs and publications. The Catalogs of tools references tools for (1) ontology improvement which is the focus of this paper, (2) dataset quality, (3) querying, and (4) reasoning. Figure 9 demonstrates an extensive literature survey within the table of contents classified in two different ways:

  • A bullet list referencing tool’s URLs and scientific publications are displayed simply with clickable links (see Fig. 6 as an example).

  • Mind maps [55] are recognized as a useful methodology and a powerful graphics technique used to translate what’s in the mind into a visual picture. Since mind mapping works like the brain, it allows us to organize and understand information faster and better. We designed mind maps to answer Frequently Asked Questions (FAQs). Figure 11 shows the Mind maps for ontology catalogs. Figure 12 illustrates the Mind maps for ontology methodologies. Figure 13 illustrates the Mind maps for ontology validation.

The catalogs of tools are available onlineFootnote 14; it covers numerous research domains: (1) ontology documentation, (2) ontology catalogs and semantic search engines, (3) ontology methodologies, (4) ontology validators, (5) ontology validators for IoT, (6) ontology visualization, (7) collaborative vocabulary development, (8) ontology evaluation, and (9) ontology repair. Extensive work has been done in ontology documentation (not covered in the Related Work Section) and structured within a mind map, but referenced by the Catalogs of Tools as displayed in Fig. 10. We guide ontology designers with LODE and Parrot tool since web services are provided, as shown in Sect. 7.3 and Table 3. We cover some of those topics (ontology methodology, ontology evaluation, ontology metrics, quality, and relevant tools) in Sect. 3. Ontology designers can contribute to enrich the set of Catalogue of Tools by using a Google Form interface.Footnote 15

Table 3 Reusable tools for the ontology improvement
Fig. 8
figure 8

Catalogs of tools

Fig. 9
figure 9

State of the art classifying ontology improvement tools

1.2 7.2 Dr. PerfectO Availability of Tools (DPAT)

DPAT tool (depicted in Fig. 7 and introduced in Sect. 4.1), online http://perfectsemanticweb.appspot.com/?p=availability_tools, checks the availability of reusable tools in case the server is down. Each row provides: (1) the name of the tool, (2) its usage, (3) the clickable tool’s URL, and (4) the tool availability (displayed as images: OK or NOT OKAY). For instance, the LODE ontology documentation web service runs well when DPAT has been deployed.

Fig. 10
figure 10

Mind map classifying ontology documentation tools

Fig. 11
figure 11

Mind map classifying ontology catalog tools

Fig. 12
figure 12

Mind map classifying ontology methodologies

Fig. 13
figure 13

Mind map classifying ontology validation tools

Table 4 Evaluation: IoT ontologies with tools for ontologies

1.3 7.3 PerfectO Guidance: The Most Accessible Tools for Ontology Engineering

The learning curve for software engineering can be extremely high when developers are not familiar with the same programming languages and libraries used to build the tools. A set of tools that can be considered<easy-to-use> if: (1) The tools provide GUIs and web services, (2) the documentation is available and well-explained, (3) the ontologies can be evaluated with tools offering diverse functionalities, and (4) software setup configuration is not required.

The classification of tools that we have selected is available within Table 3 to support the Ontology Improvement methodology (explained in Sect. 4.2). The table is a way to organize the multiple tested technologies and if there is an available source for documenting it. For instance, WebVOWL tool can be used to provide automatic ontology graph visualization, Parrot for automatic documentation, etc. In the table, the first column is dedicated to the tool name, and scientific publication is available. The second column explains the requirement satisfied. The third column provides the GUI interface URL. The fourth column indicates the web service or API if available. The fifth column contains the code URL if accessible. The sixth column explains the maintainability of the tools. The web services are more convenient to integrate when developing the methodology, but the implementation depends on web reliability and the maintenance of web services. Sometimes the servers hosting the web services are down, or when new versions are released, it has an impact on the implementation. When the tools are open source, such dependencies are avoided, but it is more time-consuming for developers to get into the code based on various languages and technologies. It is another reason demonstrating the needs to help ontology designers. In Table 3, within the maintained column: High means that the community behind the tools is reactive when issues arise such as server down, fixing bugs, answering questions or adding new functionalities. Medium means that the tools is frequently down, due to server issues.

More tools will be integrated later since we are facing the issues of the availability of tools as well. For this reason, a parallel work was to develop the Dr. PerfectO Availability of Tools (DPAT) component demonstrator (introduced in Section 7.2).

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Gyrard, A., Atemezing, G., Serrano, M. (2021). PerfectO: An Online Toolkit for Improving Quality, Accessibility, and Classification of Domain-Based Ontologies. In: Pandey, R., Paprzycki, M., Srivastava, N., Bhalla, S., Wasielewska-Michniewska, K. (eds) Semantic IoT: Theory and Applications. Studies in Computational Intelligence, vol 941. Springer, Cham. https://doi.org/10.1007/978-3-030-64619-6_7

Download citation

Publish with us

Policies and ethics