Abstract
How to understand better the knowledge provided by Google results to build future “smart vehicle-centric” applications? What is the knowledge expertise required to build a smart vehicle application (e.g., driver assistance system)? Automotive companies (e.g., Toyota, BMW, Renault) are employing Internet of Things (IoT) and Semantic Web technologies to model the automotive sector. We aggregate this “common sense knowledge” in a automotive dataset which comprises 42 semantics-based projects between 2005 and 2019. The knowledge is already encoded with knowledge representation languages (e.g., RDF, RDFS, and OWL) and supported by the World Wide Web Consortium (W3C). However, only a subset of those projects share their expertise by publishing their ontologies online. For this reason, at the current time or writing, only 16 ontologies are processable. Our innovative Knowledge Extraction for the Automotive Sector (KEAS) methodology analyzes what are the most popular terms required to build a smart car, it provides: (1) a set of keyphrase that are synonyms to smart cars to find domain-specific knowledge, (2) synonyms are used to build a corpus of scientific publications to train the k-means machine learning algorithm, (3) a dataset of smart car ontologies that we collected, is analyzed by the k-means algorithm, and (4) the extraction of the most common terms from the ontology dataset for the automotive sector. Our KEAS findings can be used as a starting point for further domain-specific investigations (e.g., Volvo willing to integrate semantic web) and for future information extraction from structured knowledge.
Keywords
- Internet of Things (IoT)
- Knowledge directory service
- Semantic ontology interoperability
- Ontology validation
- Reusability
- Semantic Web of Things (SWoT)
- Semantic web technologies
- Reusable knowledge
This is a preview of subscription content, access via your institution.
Buying options
Tax calculation will be finalised at checkout
Purchases are for personal use only
Learn about institutional subscriptionsNotes
- 1.
- 2.
- 3.
- 4.
- 5.
- 6.
- 7.
- 8.
- 9.
- 10.
“Smart car ontology” search on Google, December 2018.
- 11.
- 12.
- 13.
- 14.
- 15.
- 16.
- 17.
References
Zhao, L., Ichise, R., Mita, S., Sasaki, Y.: An ontology-based intelligent speed adaptation system for autonomous cars. In: Joint International Semantic Technology Conference (Conference rank not found). Springer (2014)
Klotz, B., Troncy, R., Wilms, D., Bonnet, C.: VSSo—a vehicle signal and attribute ontology (Short Paper). In: SSN Workshop at ISWC. CEUR Workshop Proceedings(2018)
Gyrard, A., Bonnet, C., Boudaoud, K.: Ontology-based intelligent transportation systems. In: BMW Summer School 2014, Autonomous Driving in the Internet of Cars (2014). [Online]. Available: http://sensormeasurement.appspot.com/publication/PosterBMW.pdf
Klotz, B., Troncy, R., Wilms, D., Bonnet, C.: Generating semantic trajectories using a car signal ontology. In: The Web Conference. WWW, A-rank Conference (2018)
Klotz, B., Datta, S.K., Wilms, D., Troncy, R., Bonnet, C.: A car as a semantic web thing: motivation and demonstration. In: Global IoT Summit GIoTS, colocated with the IoT Week (2018)
Armand, A., Filliat, D., Ibañez-Guzman, J.: Ontology-based context awareness for driving assistance systems. In: Intelligent Vehicles Symposium (IEEE IV, B-rank conference). IEEE (2014)
Katsumi, M., Fox, M.: Ontologies for transportation research: a survey. Elsevier Transp. Res. Part C Emerg. Technol. J. (IF: 5.775 in 2018) (2018)
Villalba, J.B.: Using Ontologies and Intelligent Systems for Traffic Accident Assistance in Vehicular Environments. Ph.D. dissertation (2014)
Noura, M., Gyrard, A., Heil, S., Gaedke, M.: Concept extraction from the web of things knowledge bases. In: International Conference WWW/Internet 2018. Elsevier, Outstanding Paper Award (2018)
Wetterwald, M.: Slides: towards a SAREF extension for automotive. In: W3C Workshop on Data Models for Transportation
Puiu, D., Barnaghi, P., Toenjes, R., Kümper, D., Ali, M.I., Mileo, A., Parreira, J.X., Fischer, M., Kolozali, S., Farajidavar, N., et al.: Citypulse: large scale data analytics framework for smart cities. IEEE Access (2016)
Kolozali, S., Bermudez-Edo, M., Puschmann, D., Ganz, F., Barnaghi, P.: A knowledge-based approach for real-time iot data stream annotation and processing. In: IEEE iThings Conference (2014)
Pollard, E., Morignot, P., Nashashibi, F.: An ontology-based model to determine the automation level of an automated vehicle for co-driving. In: International Conference on Information Fusion (2013)
Zhao, L., Ichise, R., Yoshikawa, T., Naito, T., Kakinami, T., Sasaki, Y.: Ontology-based decision making on uncontrolled intersections and narrow roads. In: IEEE Intelligent Vehicles Symposium (IV). IEEE (2015)
Zhao, L., Ichise, R., Mita, S., Sasaki, Y.: Core ontologies for safe autonomous driving. In: International Semantic Web Conference (Posters & Demos). ISWC, A-rank conference (2015)
Zhao, L., Ichise, R., Mita, S., Sasaki, Y.: Ontologies for advanced driver assistance systems. In: The 35th Semantic Web & Ontology Workshop (SWO) (2015)
Lécué, F., Tallevi-Diotallevi, S., Hayes, J., Tucker, R., Bicer, V., Sbodio, M.L., Tommasi, P.: Star-city: semantic traffic analytics and reasoning for city. In: Proceedings of the 19th international conference on intelligent user interfaces. ACM (2014)
Ruta, M., Scioscia, F., Gramegna, F., Di Sciascio, E.: A mobile knowledge-based system for on-board diagnostics and car driving assistance. In: International conference on mobile ubiquitous computing, systems, services and technologies (UBICOMM, B-rank conference). Citeseer (2010)
Ruta, M., Scioscia, F., Gramegna, F., Loseto, G., Di Sciascio, E.: Knowledge-based real-time car monitoring and driving assistance. In: SEBD. Citeseer (2012)
M. Ruta, F. Scioscia, G. Loseto, A. Pinto, and E. Di Sciascio, “Machine Learning in the Internet of Things: a Semantic-enhanced Approach,” Semantic Web Journal, 2017
A. I. Maarala, X. Su, and J. Riekki, “Semantic reasoning for context-aware internet of things applications,” IEEE Internet of Things Journal, 2017
Bermejo, A., Villadangos, J., Astrain, J., Cordoba, A.: Ontology based road traffic management. In: Intelligent Distributed Computing VI. Springer (2013)
Corsar, D., Markovic, M., Edwards, P., Nelson, J.D.: The transport disruption ontology. In: International Semantic Web Conference (ISWC, A-rank Conference). Springer (2015)
Codescu, M., Horsinka, G., Kutz, O., Mossakowski, T., Rau, R.: Osmonto—an Ontology of OpenStreetMap tags. In: State of the Map Europe (SOTM-EU) (2011)
Fuchs, S., Rass, S., Lamprecht, B., Kyamakya, K.: A model for ontology-based scene description for context-aware driver assistance systems. In: Proceedings of the 1st International Conference on Ambient Media and Systems (2008)
Fuchs, S., Rass, S., Kyamakya, K: Integration of ontological scene representation and logic-based reasoning for context-aware driver assistance systems. In: Electronic Communications of the EASST (2008)
Fernandez, S., Ito, T.: Using SSN ontology for automatic traffic light settings on intelligent transportation systems. In: IEEE International Conference on Agents (ICA). IEEE (2016)
Barrachina, J., Garrido, P., Fogue, M., Martinez, F.J., Cano, J.-C., Calafate, C.T., Manzoni, P.: CAOVA: a car accident ontology for VANETs. In: IEEE Wireless Communications and Networking Conference (WCNC, A-rank conference). IEEE (2012)
Barrachina, J., Garrido, P., Fogue, M., Martinez, F.J., et al.: VEACON: a vehicular accident ontology designed to improve safety on the roads. Elsevier J. Netw. Comput. Appl. (IF: 5.273 in 2018) (2012)
Stocker, M., Rönkkö, M., Kolehmainen, M.: Making Sense of Sensor Data Using Ontology: A Discussion for Road Vehicle Classification (2012)
Stocker, M., Rönkkö, M., et al.: Situational knowledge representation for traffic observed by a pavement vibration sensor network. Trans. Intell. Transp. Syst. (2014)
Ebers, S., Hellbuck, H., Pfisterer, D., Fischer, S.: Short paper: collaboration Between VANET applications based on open standards. In: Vehicular Networking Conference (VNC, B-rank conference). IEEE (2013)
De Oliveira, K.M., Bacha, F., Mnasser, H., Abed, M.: Transportation ontology definition and application for the content personalization of user interfaces. Elsevier Expert Syst. Appl. J. (IF: 4.292 in 2018) (2013)
Zidi, A., Abed, M.: A generalized framework for ontology-based information retrieval: application to a public-transportation system. In: International Conference on Advanced Logistics and Transport (ICALT, B-Rank Conference). IEEE (2013)
Mnasser, H., Gargouri, F., Abed, M.: Towards an intelligent information system of public transportation. In: International Conference on Advanced Logistics and Transport (ICALT, B-Rank Conference). IEEE (2013)
Houda, M., Khemaja, M., Oliveira, K., Abed, M.: A public transportation ontology to support user travel planning. In: International Conference on Research Challenges in Information Science (RCIS, B-Rank Conference). IEEE (2010)
Li, G., Ma, D., Loua, V.: Fuzzy ontology based knowledge reasoning framework design. In: International Conference on Software Engineering and Service Science (ICSESS, Ranking Not Found). IEEE (2012)
Calavia, L., Baladrón, C., Aguiar, J.M., Carro, B., Sánchez-Esguevillas, A.: A semantic autonomous video surveillance system for dense camera networks in smart cities. Sensors (2012)
Madkour, M., Maach, A.: Ontology-based context modeling for vehicle context-aware services. J. Theor. Appl. Inf. Technol. (2011)
Hamilton, A., González, E.J., Acosta, L., Arnay, R., Espelosín, J.: Semantic-based approach for route determination and ontology updating. Eng. Appl. Artif. Intell. (2013)
Feld, M., Müller, C.: The automotive ontology: managing knowledge inside the vehicle and sharing it between cars. In: International Conference on Automotive User Interfaces and Interactive Vehicular Applications (Conference Rank Not Found). ACM (2011)
Wang, J., Wang, X.: An ontology-based traffic accident risk mapping framework. In: International Symposium on Spatial and Temporal Databases. Springer (2011)
Hülsen, M., Zöllner, J.M., Weiss, C.: Traffic intersection situation description ontology for advanced driver assistance. In: Intelligent Vehicles Symposium (IV). IEEE (2011)
Berdier, C.: Road system ontology: organisation and feedback. In: Ontologies in Urban Development Projects. Springer (2011)
Kannan, S., Thangavelu, A., Kalivaradhan, R.: An intelligent driver assistance system (I-DAS) for vehicle safety modelling using ontology approach. In: International Journal of UbiComp. UbiComp, A-Rank Conference (2010)
Baumgartner, N., Gottesheim, W., Mitsch, S., Retschitzegger, W., Schwinger, W.: BeAware!—situation awareness, the ontology-driven way. Elsevier Data Knowl. Eng. J. (IF: 1.583 in 2018) (2010)
Liu, C.-H., Chang, K.-L., Chen, J.J.-Y., Hung, S.-C.: Ontology-based context representation and reasoning using OWL and SWRL. In: Conference on Communication Networks and Services Research (CNSR, B-Rank conference). IEEE (2010)
Niaraki, A.S, Kim, K.: Ontology based personalized route planning system using a multi-criteria decision making approach. Elsevier Expert Syst. Appl. J. (IF: 4.292 in 2018) (2009)
Yue, D., Wang, S., Zhao, A.: Traffic accidents knowledge management based on ontology. In: International Conference on Fuzzy Systems and Knowledge Discovery (FSKD, B-Rank conference). IEEE (2009)
Zhai, J., Chen, Y., Yu, Y., Liang, Y., Jiang, J.: Fuzzy semantic retrieval for traffic information based on fuzzy ontology and RDF on the semantic web. JSW (2009)
Sun, J., Wu, Z.-h., Pan, G.: Context-aware smart car: from model to prototype. Springer J. Zhejiang Univ.-Sci. A (2009)
Belhadef, H., Kholladi, M.: Urban ontology-based geographical information system. J. Theor. Appl. Inf. Technol. (2009)
Regele, R.: Using ontology-based traffic models for more efficient decision making of autonomous vehicles. In: International Conference on Autonomic and Autonomous Systems (ICAS, B-Rank conference). IEEE (2008)
Eigner, R., Lutz, G.: Collision avoidance in VANETs—an application for ontological context models. In: International Conference on Pervasive Computing and Communications (PerCom, A-Rank Conference). IEEE (2008)
Cheng, G., Du, Q., Ma, H.: The design and implementation of ontology and rules based knowledge base for transportation. In: International Conference on Computer Science and Software Engineering (CASCON, B-Rank conference). IEEE (2008)
Hu, Y., Wu, Z., Guo, M.: Ontology driven adaptive data processing in wireless sensor networks. In: International Conference on Scalable Information Systems. ICST (Institute for Computer Sciences, Social-Informatics) (2007)
Lorenz, B., Ohlbach, H.J., Yang, L.: Ontology of Transportation Networks (2005)
Budgen, D., Brereton, .: Performing systematic literature reviews in software engineering. In: International Conference on Software Engineering. ACM (2006)
Kitchenham, B., Pretorius, R., Budgen, D., Brereton, O.P., Turner, M., Niazi, M., Linkman, S.: Systematic literature reviews in software engineering—a tertiary study. Inf. Softw. Technol. (2010)
Rizzo, G., Tomassetti, F., Vetro, A., Ardito, L., Torchiano, M., Morisio, M., Troncy, R.: Semantic enrichment for recommendation of primary studies in a systematic literature review. Digit. Scholarship Humanit. (2017)
Noura, M., Gyrard, A., Heil, S., Gaedke, M.: Automatic Knowledge Extraction to Build Semantic Web of Things Applications (2019)
Compton, M., Barnaghi, P., Bermudez, L., Garcia-Castro, R., Corcho, O., Cox, S., Graybeal, J., Hauswirth, M., Henson, C., Herzog, A., et al.: The ssn ontology of the w3c semantic sensor network incubator group. Sci. Serv. Agents World Wide Web Web Semant. (2012)
Haller, A., Janowicz, K., Cox, S., Le Phuoc, D., Taylor, K., Lefrançois, M.: Semantic Sensor Network Ontology. W3C Recommendation (2017). [Online]. Available: https://www.w3.org/TR/2017/CR-vocab-ssn-20170711/
Daniele, L., Solanki, M., den Hartog, F., Roes, J.: Interoperability for smart appliances in the iot world. In: International Semantic Web Conference. Springer (2016)
Acknowledgements
This work has partially received funding from the European Union’s Horizon 2020 research and innovation programme under grant agreement No. 857237 (Interconnect). The opinions expressed are those of the authors and do not reflect those of the sponsors.
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2021 Springer Nature Switzerland AG
About this chapter
Cite this chapter
Noura, M., Gyrard, A., Klotz, B., Troncy, R., Datta, S.K., Gaedke, M. (2021). How to Understand Better “Smart Vehicle”? Knowledge Extraction for the Automotive Sector Using Web of Things. In: Pandey, R., Paprzycki, M., Srivastava, N., Bhalla, S., Wasielewska-Michniewska, K. (eds) Semantic IoT: Theory and Applications. Studies in Computational Intelligence, vol 941. Springer, Cham. https://doi.org/10.1007/978-3-030-64619-6_13
Download citation
DOI: https://doi.org/10.1007/978-3-030-64619-6_13
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-030-64618-9
Online ISBN: 978-3-030-64619-6
eBook Packages: Intelligent Technologies and RoboticsIntelligent Technologies and Robotics (R0)