Skip to main content

Towards High Performance Relativistic Electronic Structure Modelling: The EXP-T Program Package

Part of the Communications in Computer and Information Science book series (CCIS,volume 1331)

Abstract

Modern challenges arising in the fields of theoretical and experimental physics require new powerful tools for high-precision electronic structure modelling; one of the most perspective tools is the relativistic Fock space coupled cluster method (FS-RCC). Here we present a new extensible implementation of the FS-RCC method designed for modern parallel computers. The underlying theoretical model, algorithms and data structures are discussed. The performance and scaling features of the implementation are analyzed. The software developed allows to achieve a completely new level of accuracy for prediction of properties of atoms and molecules containing heavy and superheavy nuclei.

Keywords

  • Relativistic coupled cluster method
  • High performance computing
  • Excited electronic states
  • Heavy element compounds

This is a preview of subscription content, access via your institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • DOI: 10.1007/978-3-030-64616-5_33
  • Chapter length: 12 pages
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
eBook
USD   84.99
Price excludes VAT (USA)
  • ISBN: 978-3-030-64616-5
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
Softcover Book
USD   109.99
Price excludes VAT (USA)
Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.

References

  1. Dykstra, C., et al. (eds.): Theory and Applications of Computational Chemistry. The First Forty Years, 1st edn. Elsevier Science, Amsterdam (2005). https://doi.org/10.1021/ja059883q

  2. Petrov, A.N., Skripnikov, L.V., Titov, A.V.: Zeeman interaction in \({}^3{\rm \Delta _1}\) state of HfF\(^+\) to search for the electron electric dipole moment. Phys. Rev. A 96, 022508 (2017). https://doi.org/10.1103/PhysRevA.96.022508

  3. Ivanov, M.V., Bangerter, F.H., Krylov, A.I.: Towards a rational design of laser-coolable molecules: insights from equation-of-motion coupled-cluster calculations. Phys. Chem. Chem. Phys. 21, 19447–19457 (2019). https://doi.org/10.1039/c9cp03914g

    CrossRef  Google Scholar 

  4. Laatiaoui, M., et al.: Atom-at-a-time laser resonance ionization spectroscopy of nobelium. Nature 538, 495–498 (2016). https://doi.org/10.1038/nature19345

    CrossRef  Google Scholar 

  5. Ruiz, R.F.G., et al.: Spectroscopy of short-lived radioactive molecules: a sensitive laboratory for new physics. arXiv preprint arXiv:1910.13416 (2019)

  6. Eliav, E., Fritzsche, S., Kaldor, U.: Electronic structure theory of the superheavy elements. Nucl. Phys. A 944, 518–550 (2015). https://doi.org/10.1016/j.nuclphysa.2015.06.017

    CrossRef  Google Scholar 

  7. Dyall, K.G., Faegri Jr., K.: Introduction to Relativistic Quantum Chemistry, 1st edn. Oxford University Press, Oxford (2007)

    CrossRef  Google Scholar 

  8. Visscher, L., Lee, T.J., Dyall, K.G.: Formulation and implementation of a relativistic unrestricted coupled-cluster method including noniterative connected triples. J. Chem. Phys. 105(19), 8769–8776 (1996). https://doi.org/10.1063/1.472655

    CrossRef  Google Scholar 

  9. Eliav, E., Kaldor, U., Hess, B.A.: The relativistic Fock-space coupled-cluster method for molecules: CdH and its ions. J. Chem. Phys. 108, 3409–3415 (1998). https://doi.org/10.1063/1.475740

    CrossRef  Google Scholar 

  10. Visscher, L., Eliav, E., Kaldor, U.: Formulation and implementation of the relativistic Fock-space coupled cluster method for molecules. J. Chem. Phys. 115(21), 9720–9726 (2001). https://doi.org/10.1063/1.1415746

    CrossRef  Google Scholar 

  11. Saitow, M., Becker, U., Riplinger, C., Valeev, E.F., Neese, F.: A new near-linear scaling, efficient and accurate, open-shell domain-based local pair natural orbital coupled cluster singles and doubles theory. J. Chem. Phys. 146(16), 164105 (2017). https://doi.org/10.1063/1.4981521

  12. Gomes, A.S.P., Saue, T., Visscher, L., Jensen, H.J.A., Bast, R., et al.: DIRAC, a relativistic ab initio electronic structure program (2016). http://www.diracprogram.org

  13. Kaldor, U.: The Fock space coupled cluster method: theory and application. Theor. Chim. Acta 80, 427–439 (1991). https://doi.org/10.1007/bf01119664

    CrossRef  Google Scholar 

  14. Evangelisti, S., Daudey, J.P., Malrieu, J.P.: Qualitative intruder-state problems in effective Hamiltonian theory and their solution through intermediate Hamiltonians. Phys. Rev. A 35, 4930–4941 (1987). https://doi.org/10.1103/physreva.35.4930

    CrossRef  Google Scholar 

  15. Zaitsevskii, A., Mosyagin, N.S., Stolyarov, A.V., Eliav, E.: Approximate relativistic coupled-cluster calculations on heavy alkali-metal diatomics: application to the spin-orbit-coupled A\({}^1\Sigma ^+\) and \(b{}^3\Pi \) states of RbCs and Cs\({}_2\). Phys. Rev. A 96(2), 022516 (2017). https://doi.org/10.1103/physreva.96.022516

  16. Kozlov, S.V., Bormotova, E.A., Medvedev, A.A., Pazyuk, E.A., Stolyarov, A.V., Zaitsevskii, A.: A first principles study of the spin-orbit coupling effect in LiM (M = Na, K, Rb, Cs) molecules. Phys. Chem. Chem. Phys. 22, 2295–2306 (2020). https://doi.org/10.1039/c9cp06421d

    CrossRef  Google Scholar 

  17. Zaitsevskii, A., Eliav, E.: Padé extrapolated effective Hamiltonians in the Fock space relativistic coupled cluster method. Int. J. Quantum Chem. 118, e25772 (2018). https://doi.org/10.1002/qua.25772

  18. Shavitt, I., Bartlett, R.J.: Many Body Methods in Chemistry and Physics. Cambridge University Press, Cambridge (2009). https://doi.org/10.1017/cbo9780511596834

  19. Kaldor, U.: Open-shell coupled-cluster method: electron affinities of Li and Na. J. Comput. Chem. 8, 448–453 (1987). https://doi.org/10.1002/jcc.540080423

    CrossRef  Google Scholar 

  20. Matthews, D.A.: High-performance tensor contraction without transposition. SIAM J. Sci. Comput. 40, C1–C24 (2018). https://doi.org/10.1137/16m108968x

    CrossRef  MathSciNet  MATH  Google Scholar 

  21. Stanton, J.F., Gauss, J., Watts, J.D., Bartlett, R.J.: A direct product decomposition approach for symmetry exploitation in many-body methods. I. Energy calculations. J. Chem. Phys. 94, 4334–4345 (1991). https://doi.org/10.1063/1.460620

    CrossRef  Google Scholar 

  22. Shee, A., Visscher, L., Saue, T.: Analytic one-electron properties at the 4-component relativistic coupled cluster level with inclusion of spin-orbit coupling. J. Chem. Phys. 145, 184107 (2016). https://doi.org/10.1063/1.4966643

  23. Saue, T., Jensen, H.J.A.: Quaternion symmetry in relativistic molecular calculations: the Dirac-Hartree-Fock method. J. Chem. Phys. 111, 6211–6222 (1999). https://doi.org/10.1063/1.479958

    CrossRef  Google Scholar 

  24. Dagum, L., Menon, R.: OpenMP: an industry standard API for shared-memory programming. IEEE Comput. Sci. Eng. 5, 46–55 (1998). https://doi.org/10.1109/99.660313

    CrossRef  Google Scholar 

  25. Intel(R) Math Kernel Library Version 2018.0.1

    Google Scholar 

  26. https://developer.nvidia.com/cublas

  27. Hughes, S.R., Kaldor, U.: The coupled-cluster method in high sectors of the Fock space. Int. J. Quantum Chem. 55, 127–132 (1995). https://doi.org/10.1002/qua.560550207

    CrossRef  Google Scholar 

  28. Zaitsevskii, A.V., Skripnikov, L.V., Kudrin, A.V., Oleinichenko, A.V., Eliav, E., Stolyarov, A.V.: Electronic transition dipole moments in relativistic coupled-cluster theory: the finite-field method. Opt. Spectrosc. 124, 451–456 (2018). https://doi.org/10.1134/s0030400x18040215

    CrossRef  Google Scholar 

  29. Visscher, L.: On the construction of double group molecular symmetry functions. Chem. Phys. Lett. 253, 20–26 (1996). https://doi.org/10.1016/0009-2614(96)00234-5

    CrossRef  Google Scholar 

Download references

Acknowledgements

Authors are grateful to T. A. Isaev, S. V. Kozlov, L. V. Skripnikov, A. V. Stolyarov and L. Visscher for fruitful discussions. This work has been carried out using computing resources of the federal collective usage centre Complex for Simulation and Data Processing for Mega-science Facilities at NRC “Kurchatov Institute”, http://ckp.nrcki.ru/, and computers of Quantum Chemistry Lab at NRC “Kurchatov Institute” – PNPI.

The research was supported by the Russian Science Foundation (Grant No. 20-13-00225).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alexander V. Oleynichenko .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and Permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this paper

Verify currency and authenticity via CrossMark

Cite this paper

Oleynichenko, A.V., Zaitsevskii, A., Eliav, E. (2020). Towards High Performance Relativistic Electronic Structure Modelling: The EXP-T Program Package. In: Voevodin, V., Sobolev, S. (eds) Supercomputing. RuSCDays 2020. Communications in Computer and Information Science, vol 1331. Springer, Cham. https://doi.org/10.1007/978-3-030-64616-5_33

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-64616-5_33

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-64615-8

  • Online ISBN: 978-3-030-64616-5

  • eBook Packages: Computer ScienceComputer Science (R0)