Abstract
Modern challenges arising in the fields of theoretical and experimental physics require new powerful tools for high-precision electronic structure modelling; one of the most perspective tools is the relativistic Fock space coupled cluster method (FS-RCC). Here we present a new extensible implementation of the FS-RCC method designed for modern parallel computers. The underlying theoretical model, algorithms and data structures are discussed. The performance and scaling features of the implementation are analyzed. The software developed allows to achieve a completely new level of accuracy for prediction of properties of atoms and molecules containing heavy and superheavy nuclei.
Keywords
- Relativistic coupled cluster method
- High performance computing
- Excited electronic states
- Heavy element compounds
This is a preview of subscription content, access via your institution.
Buying options





References
Dykstra, C., et al. (eds.): Theory and Applications of Computational Chemistry. The First Forty Years, 1st edn. Elsevier Science, Amsterdam (2005). https://doi.org/10.1021/ja059883q
Petrov, A.N., Skripnikov, L.V., Titov, A.V.: Zeeman interaction in \({}^3{\rm \Delta _1}\) state of HfF\(^+\) to search for the electron electric dipole moment. Phys. Rev. A 96, 022508 (2017). https://doi.org/10.1103/PhysRevA.96.022508
Ivanov, M.V., Bangerter, F.H., Krylov, A.I.: Towards a rational design of laser-coolable molecules: insights from equation-of-motion coupled-cluster calculations. Phys. Chem. Chem. Phys. 21, 19447–19457 (2019). https://doi.org/10.1039/c9cp03914g
Laatiaoui, M., et al.: Atom-at-a-time laser resonance ionization spectroscopy of nobelium. Nature 538, 495–498 (2016). https://doi.org/10.1038/nature19345
Ruiz, R.F.G., et al.: Spectroscopy of short-lived radioactive molecules: a sensitive laboratory for new physics. arXiv preprint arXiv:1910.13416 (2019)
Eliav, E., Fritzsche, S., Kaldor, U.: Electronic structure theory of the superheavy elements. Nucl. Phys. A 944, 518–550 (2015). https://doi.org/10.1016/j.nuclphysa.2015.06.017
Dyall, K.G., Faegri Jr., K.: Introduction to Relativistic Quantum Chemistry, 1st edn. Oxford University Press, Oxford (2007)
Visscher, L., Lee, T.J., Dyall, K.G.: Formulation and implementation of a relativistic unrestricted coupled-cluster method including noniterative connected triples. J. Chem. Phys. 105(19), 8769–8776 (1996). https://doi.org/10.1063/1.472655
Eliav, E., Kaldor, U., Hess, B.A.: The relativistic Fock-space coupled-cluster method for molecules: CdH and its ions. J. Chem. Phys. 108, 3409–3415 (1998). https://doi.org/10.1063/1.475740
Visscher, L., Eliav, E., Kaldor, U.: Formulation and implementation of the relativistic Fock-space coupled cluster method for molecules. J. Chem. Phys. 115(21), 9720–9726 (2001). https://doi.org/10.1063/1.1415746
Saitow, M., Becker, U., Riplinger, C., Valeev, E.F., Neese, F.: A new near-linear scaling, efficient and accurate, open-shell domain-based local pair natural orbital coupled cluster singles and doubles theory. J. Chem. Phys. 146(16), 164105 (2017). https://doi.org/10.1063/1.4981521
Gomes, A.S.P., Saue, T., Visscher, L., Jensen, H.J.A., Bast, R., et al.: DIRAC, a relativistic ab initio electronic structure program (2016). http://www.diracprogram.org
Kaldor, U.: The Fock space coupled cluster method: theory and application. Theor. Chim. Acta 80, 427–439 (1991). https://doi.org/10.1007/bf01119664
Evangelisti, S., Daudey, J.P., Malrieu, J.P.: Qualitative intruder-state problems in effective Hamiltonian theory and their solution through intermediate Hamiltonians. Phys. Rev. A 35, 4930–4941 (1987). https://doi.org/10.1103/physreva.35.4930
Zaitsevskii, A., Mosyagin, N.S., Stolyarov, A.V., Eliav, E.: Approximate relativistic coupled-cluster calculations on heavy alkali-metal diatomics: application to the spin-orbit-coupled A\({}^1\Sigma ^+\) and \(b{}^3\Pi \) states of RbCs and Cs\({}_2\). Phys. Rev. A 96(2), 022516 (2017). https://doi.org/10.1103/physreva.96.022516
Kozlov, S.V., Bormotova, E.A., Medvedev, A.A., Pazyuk, E.A., Stolyarov, A.V., Zaitsevskii, A.: A first principles study of the spin-orbit coupling effect in LiM (M = Na, K, Rb, Cs) molecules. Phys. Chem. Chem. Phys. 22, 2295–2306 (2020). https://doi.org/10.1039/c9cp06421d
Zaitsevskii, A., Eliav, E.: Padé extrapolated effective Hamiltonians in the Fock space relativistic coupled cluster method. Int. J. Quantum Chem. 118, e25772 (2018). https://doi.org/10.1002/qua.25772
Shavitt, I., Bartlett, R.J.: Many Body Methods in Chemistry and Physics. Cambridge University Press, Cambridge (2009). https://doi.org/10.1017/cbo9780511596834
Kaldor, U.: Open-shell coupled-cluster method: electron affinities of Li and Na. J. Comput. Chem. 8, 448–453 (1987). https://doi.org/10.1002/jcc.540080423
Matthews, D.A.: High-performance tensor contraction without transposition. SIAM J. Sci. Comput. 40, C1–C24 (2018). https://doi.org/10.1137/16m108968x
Stanton, J.F., Gauss, J., Watts, J.D., Bartlett, R.J.: A direct product decomposition approach for symmetry exploitation in many-body methods. I. Energy calculations. J. Chem. Phys. 94, 4334–4345 (1991). https://doi.org/10.1063/1.460620
Shee, A., Visscher, L., Saue, T.: Analytic one-electron properties at the 4-component relativistic coupled cluster level with inclusion of spin-orbit coupling. J. Chem. Phys. 145, 184107 (2016). https://doi.org/10.1063/1.4966643
Saue, T., Jensen, H.J.A.: Quaternion symmetry in relativistic molecular calculations: the Dirac-Hartree-Fock method. J. Chem. Phys. 111, 6211–6222 (1999). https://doi.org/10.1063/1.479958
Dagum, L., Menon, R.: OpenMP: an industry standard API for shared-memory programming. IEEE Comput. Sci. Eng. 5, 46–55 (1998). https://doi.org/10.1109/99.660313
Intel(R) Math Kernel Library Version 2018.0.1
Hughes, S.R., Kaldor, U.: The coupled-cluster method in high sectors of the Fock space. Int. J. Quantum Chem. 55, 127–132 (1995). https://doi.org/10.1002/qua.560550207
Zaitsevskii, A.V., Skripnikov, L.V., Kudrin, A.V., Oleinichenko, A.V., Eliav, E., Stolyarov, A.V.: Electronic transition dipole moments in relativistic coupled-cluster theory: the finite-field method. Opt. Spectrosc. 124, 451–456 (2018). https://doi.org/10.1134/s0030400x18040215
Visscher, L.: On the construction of double group molecular symmetry functions. Chem. Phys. Lett. 253, 20–26 (1996). https://doi.org/10.1016/0009-2614(96)00234-5
Acknowledgements
Authors are grateful to T. A. Isaev, S. V. Kozlov, L. V. Skripnikov, A. V. Stolyarov and L. Visscher for fruitful discussions. This work has been carried out using computing resources of the federal collective usage centre Complex for Simulation and Data Processing for Mega-science Facilities at NRC “Kurchatov Institute”, http://ckp.nrcki.ru/, and computers of Quantum Chemistry Lab at NRC “Kurchatov Institute” – PNPI.
The research was supported by the Russian Science Foundation (Grant No. 20-13-00225).
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2020 Springer Nature Switzerland AG
About this paper
Cite this paper
Oleynichenko, A.V., Zaitsevskii, A., Eliav, E. (2020). Towards High Performance Relativistic Electronic Structure Modelling: The EXP-T Program Package. In: Voevodin, V., Sobolev, S. (eds) Supercomputing. RuSCDays 2020. Communications in Computer and Information Science, vol 1331. Springer, Cham. https://doi.org/10.1007/978-3-030-64616-5_33
Download citation
DOI: https://doi.org/10.1007/978-3-030-64616-5_33
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-030-64615-8
Online ISBN: 978-3-030-64616-5
eBook Packages: Computer ScienceComputer Science (R0)