Skip to main content

Simultaneous Skull Conductivity and Focal Source Imaging from EEG Recordings with the Help of Bayesian Uncertainty Modelling

  • Conference paper
  • First Online:

Part of the book series: IFMBE Proceedings ((IFMBE,volume 80))

Abstract

The electroencephalography (EEG) source imaging problem is very sensitive to the electrical modelling of the skull of the patient under examination. Unfortunately, the currently available EEG devices and their embedded software do not take this into account; instead, it is common to use a literature-based skull conductivity parameter. In this paper, we propose a statistical method based on the Bayesian approximation error approach to compensate for source imaging errors due to the unknown skull conductivity and, simultaneously, to compute a low-order estimate for the actual skull conductivity value. By using simulated EEG data that corresponds to focal source activity, we demonstrate the potential of the method to reconstruct the underlying focal sources and low-order errors induced by the unknown skull conductivity. Subsequently, the estimated errors are used to approximate the skull conductivity. The results indicate clear improvements in the source localization accuracy and feasible skull conductivity estimates.

Keywords

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
EUR   29.95
Price includes VAT (France)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
EUR   160.49
Price includes VAT (France)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
EUR   210.99
Price includes VAT (France)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Vanrumste, B., Hoey, G.V., de Walle, R.V., D’Have, M., Lemahieu, I., Boon, P.: Med. Biol. Eng. Comput. 38(5), 528 (2000)

    Article  Google Scholar 

  2. Dannhauer, M., Lanfer, B., Wolters, C., Knösche, T.: Hum. Brain Mapp. 32, 1383 (2011)

    Article  Google Scholar 

  3. Lew, S., Wolters, C.H., Anwander, A., Makeig, S., MacLeod, R.S.: Hum. Brain Mapp. 30(9), 2862 (2009)

    Article  Google Scholar 

  4. Aydin, U., Vorwerk, J., Küpper, P., Heers, M., Kugel, H., Galka, A., Hamid, L., Wellmer, J., Kellinghaus, C., Rampp, S., Wolters, C.H.: PLoS ONE 9, e93154 (2014)

    Article  Google Scholar 

  5. Goncalves, S.I., de Munck, J.C., Verbunt, J.P., Heethaar, R.M., da Silva, F.H.: IEEE Trans. Biomed. Eng. 50(9), 1124 (2003)

    Article  Google Scholar 

  6. Rimpiläinen, V., Koulouri, A., Lucka, F., Kaipio, J.P., Wolters, C.H.: IFMBE Proc. 65, 892 (2018)

    Article  Google Scholar 

  7. Rimpiläinen, V., Koulouri, A., Lucka, F., Kaipio, J.P., Wolters, C.H.: NeuroImage 188, 252 (2019)

    Article  Google Scholar 

  8. Damien, P., Polson, N., Stephens, D. (eds.): Bayesian Theory and Applications. Oxford University Press, New York (2013). Kaipio, J., Kolehmainen, V

    MATH  Google Scholar 

  9. Nissinen, A., Kolehmainen, V., Kaipio, J.P.: Int. J. Uncertain Quant. 1(3), 203 (2011)

    Article  Google Scholar 

  10. Papageorgakis, C.: Patient specific conductivity models: characterization of the skull bones. Ph.d. thesis (2017)

    Google Scholar 

  11. Hoekema, R., Wieneke, G.H., van Veelen, C.W., van Rijen, P.C., Huiskamp, G.J., Ansems, J., van Huffelen, A.C.: Brain Topogr. 16(1), 29 (2003)

    Article  Google Scholar 

  12. Homma, S., Musha, T., Nakajima, Y., Okomoto, Y., Blom, S., Flink, R., Hagbarth, K.E.: Neurosci. Res. 22(1), 51 (1995)

    Article  Google Scholar 

  13. Ramon, C., Schimpf, P.H., Haueisen, J.: Biomed. Eng. Online 5, 10 (2006)

    Article  Google Scholar 

  14. Koulouri, A., Rimpiläinen, V., Brookes, M., Kaipio, J.P.: Appl. Num. Math. 106, 24 (2016)

    Article  Google Scholar 

  15. Acar, Z.A., Acar, C.E., Makeig, S.: NeuroImage 124, 168 (2016)

    Article  Google Scholar 

  16. Costa, F., Batatia, H., Oberlin, T., Tourneret, J.Y.: arXiv: 1609.06874 (2016)

Download references

Acknowledgements

This project has received funding from the ATTRACT project funded by the EC under Grant Agreement 777222 and from the Academy of Finland post-doctoral program (project no. 316542).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alexandra Koulouri .

Editor information

Editors and Affiliations

Ethics declarations

The authors declare that they have no conflicts of interest.

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Koulouri, A., Rimpiläinen, V. (2021). Simultaneous Skull Conductivity and Focal Source Imaging from EEG Recordings with the Help of Bayesian Uncertainty Modelling. In: Jarm, T., Cvetkoska, A., Mahnič-Kalamiza, S., Miklavcic, D. (eds) 8th European Medical and Biological Engineering Conference. EMBEC 2020. IFMBE Proceedings, vol 80. Springer, Cham. https://doi.org/10.1007/978-3-030-64610-3_114

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-64610-3_114

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-64609-7

  • Online ISBN: 978-3-030-64610-3

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics