Skip to main content

Compressive Sensing and On-Board Data Recovery for Vibration–Based SHM

  • Conference paper
  • First Online:
European Workshop on Structural Health Monitoring (EWSHM 2020)

Part of the book series: Lecture Notes in Civil Engineering ((LNCE,volume 127))

Included in the following conference series:

  • 2266 Accesses

Abstract

A primary challenge in the design of reliable and long–lasting Structural Health Monitoring (SHM) systems consists in ensuring real–time functionalities through cost–effective solutions. As such, energy–aware architectures demand the joint optimization of data sampling rates, on–board storage requirements, and communication data payloads. These requirements became particularly crucial with the development of mesoscale SHM systems, where the periodic gathering of signals from increasingly denser sensor networks made the data management task a primary issue. In the specific context of vibration–based SHM, where structural responses exhibit peculiar spectral profiles characterized by a sparse frequency content concentrated around the natural frequencies, the Compressive Sensing theory inspired compelling approaches for data collection and gathering to central processing units. The current work combines such advanced sub–Nyquist sampling procedures with a low-cost/low-power miniaturized Smart Sensor Network targeted on the extraction of vibration signals. The network is constituted by several recording nodes equipped with MEMS accelerometers and microcontrollers which are arranged in clusters, and microprocessors-based cluster heads in charge of data decompression and feature extraction for the characterization of the structural integrity.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 229.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 299.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 299.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    Incoherence expresses to what extent two different basis are orthogonal one to the other. A good measure of incoherence is provided by the scalar product: the lower the values, the higher the two basis are orthogonal.

References

  1. Allemang, R.J.: The modal assurance criterion-twenty years of use and abuse. Sound Vib. 37(8), 14–23 (2003)

    Google Scholar 

  2. Brincker, R., Zhang, L., Andersen, P.: Modal identification of output-only systems using frequency domain decomposition. Smart Mater. Struct. 10(3), 441 (2001)

    Article  Google Scholar 

  3. Candes, E.J., et al.: The restricted isometry property and its implications for compressed sensing. C. R. Math. 346(9–10), 589–592 (2008)

    Article  MathSciNet  Google Scholar 

  4. Donoho, D.L.: Compressed sensing. IEEE Trans. Inf. Theory 52(4), 1289–1306 (2006)

    Article  MathSciNet  Google Scholar 

  5. Ibrahim, R.A.: Handbook of Structural Life Assessment. Wiley, Hoboken (2017)

    Book  Google Scholar 

  6. Klis, R., Chatzi, E.N.: Vibration monitoring via spectro-temporal compressive sensing for wireless sensor networks. Struct. Infrastruct. Eng. 13(1), 195–209 (2017)

    Article  Google Scholar 

  7. O’Connor, S.M., Lynch, J.P., Gilbert, A.C.: Compressed sensing embedded in an operational wireless sensor network to achieve energy efficiency in long-term monitoring applications. Smart Mater. Struct. 23(8), 085014 (2014)

    Article  Google Scholar 

  8. Orović, I., Papić, V., Ioana, C., Li, X., Stanković, S.: Compressive sensing in signal processing: algorithms and transform domain formulations. Math. Prob. Eng. 2016 (2016)

    Google Scholar 

  9. Paz, M., Kim, Y.H., et al.: Structural Dynamics. Springer, Heidelberg (1991)

    Book  Google Scholar 

  10. Sony, S., Laventure, S., Sadhu, A.: A literature review of next-generation smart sensing technology in structural health monitoring. Struct. Control Health Monit. 26(3), e2321 (2019)

    Article  Google Scholar 

  11. Testoni, N., Aguzzi, C., Arditi, V., Zonzini, F., De Marchi, L., Marzani, A., Cinotti, T.S.: A sensor network with embedded data processing and data-to-cloud capabilities for vibration-based real-time SHM. J. Sens. (2018)

    Google Scholar 

  12. Testoni, N., Zonzini, F., Marzani, A., Scarponi, V., De Marchi, L.: A tilt sensor node embedding a data-fusion algorithm for vibration-based SHM. Electronics 8(1), 45 (2019)

    Article  Google Scholar 

  13. Zonzini, F., Girolami, A., De Marchi, L., Marzani, A., Brunelli, D.: Cluster-based vibration analysis of structures with graph signal processing. IEEE Trans. Ind. Electron. (2020)

    Google Scholar 

  14. Zou, Z., Bao, Y., Li, H., Spencer, B.F., Ou, J.: Embedding compressive sensing-based data loss recovery algorithm into wireless smart sensors for structural health monitoring. IEEE Sens. J. 15(2), 797–808 (2014)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Matteo Zauli .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Zauli, M., Zonzini, F., Testoni, N., Marzani, A., De Marchi, L. (2021). Compressive Sensing and On-Board Data Recovery for Vibration–Based SHM. In: Rizzo, P., Milazzo, A. (eds) European Workshop on Structural Health Monitoring. EWSHM 2020. Lecture Notes in Civil Engineering, vol 127. Springer, Cham. https://doi.org/10.1007/978-3-030-64594-6_33

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-64594-6_33

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-64593-9

  • Online ISBN: 978-3-030-64594-6

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics