Skip to main content

A Study on Vision Based Method for Damage Detection in Structures

Part of the Lecture Notes in Civil Engineering book series (LNCE,volume 127)

Abstract

To ensure the safety and the usefulness of civil structures, it is fundamental to visually inspect and survey its physical and functional condition. Current techniques in condition and safety assessment of large concrete structures are performed physically promoting to subjective and unreliable outcomes, costly and time-consuming data collection, and safety issues. This paper presents a study on less time consuming and less expensive alternative to the present methods of preliminary assessment for the detection of damages in structures. Henceforth, the focus is set on various vision-based methods for different parameters like cracks, corrosion and spalling which cause damage and deterioration of structures. Thus, a study is made on the current achievements and drawbacks of existing methods as well as open research difficulties are outlined to help both the structural engineers and the computer science researchers in setting a motivation for future research.

Keywords

  • Damage detection
  • Vision based methods
  • Computer based techniques
  • Structural health assessment

This is a preview of subscription content, access via your institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • DOI: 10.1007/978-3-030-64594-6_11
  • Chapter length: 10 pages
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
eBook
USD   229.00
Price excludes VAT (USA)
  • ISBN: 978-3-030-64594-6
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
Softcover Book
USD   299.99
Price excludes VAT (USA)
Hardcover Book
USD   299.99
Price excludes VAT (USA)
Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.
Fig. 8.

References

  1. Stuart, T.: The early use of reinforced concrete in India. In: Huerta, S (ed.) I. Juan de Herrera, SEdHC, ETSAM, A. E. Benvenuto, COAM, F. Dragados, Madrid (2003)

    Google Scholar 

  2. Gardner, D., Lark, R., Jefferson, T., Davies, R.: A survey on problems encountered in current concrete construction and the potential benefits of self-healing cementitious materials. Case stud. Const. Mater. 8, 238–247 (2018)

    Google Scholar 

  3. Valdez, B., Ramirez, J., Eliezer, A., Schorr, M., Ramos, R., Salinas, R.: Corrosion assessment of infrastructure assets in coastal seas. J. Mar. Eng. Technol. 15(3), 124–134 (2016)

    CrossRef  Google Scholar 

  4. Mohan, A., Poobal, S.: Crack detection using image processing: a critical review and analysis. Alexandria Eng. J. 57(2), 787–798 (2018)

    CrossRef  Google Scholar 

  5. Dhital, D., Lee, J.R.: A fully non-contact ultrasonic propagation imaging system for closed surface crack evaluation. Exp. Mech. 52(8), 1111–1122 (2012)

    CrossRef  Google Scholar 

  6. Hoskere, V., Narazaki, Y., Hoang, T., Spencer Jr, B.: Vision-based structural inspection using multiscale deep convolutional neural networks. arXiv preprint http://arxiv.org/abs/1805.01055 (2018)

  7. Hutchinson, T.C., Chen, Z.: Improved image analysis for evaluating concrete damage. J. Comput. Civ. Eng. 20(3), 210–216 (2006)

    CrossRef  Google Scholar 

  8. Chen, L.C., Shao, Y.C., Jan, H.H., Huang, C.W., Tien, Y.M.: Measuring system for cracks in concrete using multitemporal images. J. Surv. Eng. 132(2), 77–82 (2006)

    CrossRef  Google Scholar 

  9. Kim, H., Ahn, E., Cho, S., Shin, M., Sim, S.H.: Comparative analysis of image binarization methods for crack identification in concrete structures. Cem. Concr. Res. 99, 53–61 (2017)

    CrossRef  Google Scholar 

  10. Silva, W.R.L.D., Lucena, D.S.D.: Concrete cracks detection based on deep learning image classification. In: Multidisciplinary Digital Publishing Institute Proceedings, vol. 2, no. 8, p. 489 (2018)

    Google Scholar 

  11. Choi, K.Y., Kim, S.S.: Morphological analysis and classification of types of surface corrosion damage by digital image processing. Corros. Sci. 47(1), 1–15 (2005)

    CrossRef  Google Scholar 

  12. Medeiros, F.N., Ramalho, G.L., Bento, M.P., Medeiros, L.C.: On the evaluation of texture and color features for nondestructive corrosion detection. EURASIP J. Adv. Signal Process. 2010(1), 817473 (2010)

    CrossRef  Google Scholar 

  13. Itzhak, D., Dinstein, I., Zilberberg, T.: Pitting corrosion evaluation by computer image processing. Corros. Sci. 21(1), 17–22 (1981)

    CrossRef  Google Scholar 

  14. Kim, M.K., Sohn, H., Chang, C.C.: Localization and quantification of concrete spalling defects using terrestrial laser scanning. J. Comput. Civ. Eng. 29(6), 04014086 (2015)

    CrossRef  Google Scholar 

  15. Dawood, T., Zhu, Z., Zayed, T.: Machine vision-based model for spalling detection and quantification in subway networks. Autom. Const. 81, 149–160 (2017)

    CrossRef  Google Scholar 

  16. Hoang, N.D., Nguyen, Q. L., Tran, X.L.: Automatic detection of concrete spalling using piecewise linear stochastic gradient descent logistic regression and image texture analysis. Complexity 20(5), 536–572 (2019)

    Google Scholar 

  17. Lin, C.W., Hsu, W.K., Chiou, D.J., Chen, C.W., Chiang, W.L.: Smart monitoring system with multi-criteria decision using a feature based computer vision technique. Smart Struct. Syst. 15(6), 1583–1600 (2015)

    CrossRef  Google Scholar 

  18. Spencer Jr., B.F., Hoskere, V., Narazaki, Y.: Advances in computer vision-based civil infrastructure inspection and monitoring. Engineering 5(2), 199–222 (2019)

    CrossRef  Google Scholar 

  19. Baygin, M., Ozkaya, S.G., Ozdemir, M.A., Kazaz, I.: A new approach based on image processing for measuring compressive strength of structures. Int. J. Intell. Syst. Appl. Eng. 6(10), 21–25 (2017)

    Google Scholar 

  20. Dogan, G., Arslan, M.H., Ceylan, M.: Concrete compressive strength detection using image processing based new test method. Measurement 109, 137–148 (2017)

    CrossRef  Google Scholar 

  21. Choi, S., Shah, S.P.: Measurement of deformations on concrete subjected to compression using image correlation. Exp. Mech. 37(3), 307–313 (1997)

    CrossRef  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Venkata Dilip Kumar Pasupuleti .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and Permissions

Copyright information

© 2021 Springer Nature Switzerland AG

About this paper

Verify currency and authenticity via CrossMark

Cite this paper

Vundekode, N.R., Kalapatapu, P., Pasupuleti, V.D.K. (2021). A Study on Vision Based Method for Damage Detection in Structures. In: Rizzo, P., Milazzo, A. (eds) European Workshop on Structural Health Monitoring. EWSHM 2020. Lecture Notes in Civil Engineering, vol 127. Springer, Cham. https://doi.org/10.1007/978-3-030-64594-6_11

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-64594-6_11

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-64593-9

  • Online ISBN: 978-3-030-64594-6

  • eBook Packages: EngineeringEngineering (R0)