Skip to main content

Connecting Brain and Machine: The Mind Is the Next Frontier

  • 380 Accesses

Part of the Advances in Neuroethics book series (AIN)

Abstract

Artificial intelligence coupled with digitally connected technologies are becoming more self-evident. These developments indicate an increasing symbiosis between human and machine, referring to a new phase of interaction—symbiotic intelligence. In this vein, the human-centred development of technologies is becoming more and more important. The detection of user’s mental states, such as cognitive processes, emotional or affective reactions, offers great potential for the development of intelligent and interactive machines. Neurophysiological signals provide the basis to estimate many facets of subtle mental user states, like attention, affect, cognitive workload and many more. This has led to extensive progress in brain-based interactions—Brain-Computer Interfaces (BCIs). While most BCI research aims at designing assistive, supportive or restorative systems for severely disabled persons, the current discussion focuses on neuroadaptive control paradigms using BCIs as a strategy to make technologies more human-centred and also usable for non-medical applications. The primary goal of our neuroadaptive technology research agenda is to consistently align the increasing intelligence and autonomy of machines with the needs and abilities of the human—a human-centred neuroadaptive technology research roadmap. Due to its far-reaching social implications, our research and developments do not only face technological but also social challenges. If neuroadaptive technologies are applied in non-medical areas, they must be consistently oriented to the needs and ethical values of the users and society.

Keywords

  • Artificial intelligence
  • Cognitive enhancement
  • Brain-computer interface
  • Neuroadaptive technology
  • Autonomous systems
  • Adaptive systems
  • Personalized technology
  • Human-centred design

This is a preview of subscription content, access via your institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • DOI: 10.1007/978-3-030-64590-8_16
  • Chapter length: 12 pages
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
eBook
USD   129.00
Price excludes VAT (USA)
  • ISBN: 978-3-030-64590-8
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
Softcover Book
USD   169.99
Price excludes VAT (USA)
Hardcover Book
USD   249.99
Price excludes VAT (USA)

Notes

  1. 1.

    https://www.ahfe2019.org/, accessed 29th July 2019.

  2. 2.

    http://acii-conf.org/2019/, accessed 29th July 2019.

  3. 3.

    http://www.biomed.drexel.edu/neuroergonomics/, accessed 29th July 2019.

  4. 4.

    http://neuroadaptive.org/conference, accessed 29th July 2019.

  5. 5.

    https://www.scientificamerican.com/article/facebook-launches-moon-shot-effort-to-decode-speech-direct-from-the-brain/, accessed 29th July 2019.

  6. 6.

    https://www.wsj.com/articles/elon-musk-launches-neuralink-to-connect-brains-with-computers-1490642652, accessed 29th July 2019.

References

  1. Osiurak F, Navarro J, Reynaud E. How our cognition shapes and is shaped by technology: a common framework for understanding human tool-use interactions in the past, present, and future. Front Psychol. 2018;9:293. https://doi.org/10.3389/fpsyg.2018.00293.

    CrossRef  PubMed  PubMed Central  Google Scholar 

  2. Moore P. Enhancing me: the hope and the hype of human enhancement (TechKnow). New York: Wiley; 2008.

    Google Scholar 

  3. Kahneman D. Objective happiness. New York: Russell Sage Foundation; 1999. p. xii. 593 pp.

    Google Scholar 

  4. Jameson A. Understanding and dealing with usability side effects of intelligent processing. AI Mag. 2009;30:23–40.

    CrossRef  Google Scholar 

  5. Deci EL, Ryan RM, editors. Handbook of self-determination research. Softcover ed. Rochester: University of Rochester Press; 2004.

    Google Scholar 

  6. Hassenzahl M. User experience (UX): towards an experiential perspective on product quality. New York: ACM Press; 2008. p. 11.

    Google Scholar 

  7. Spath D, Peissner M, Sproll S. Methods from neuroscience for measuring user experience in work environments. In: Rice V, editor. Advances in understanding human performance. Boca Raton: CRC Press; 2010. p. 111–21.

    Google Scholar 

  8. Engel AK, Maye A, Kurthen M, König P. Where’s the action? The pragmatic turn in cognitive science. Trends Cogn Sci. 2013;17:202–9.

    PubMed  CrossRef  Google Scholar 

  9. Wilson M. Six views of embodied cognition. Psychon Bull Rev. 2002;9:625–36.

    PubMed  CrossRef  Google Scholar 

  10. Risko EF, Gilbert SJ. Cognitive offloading. Trends Cogn Sci. 2016;20:676–88.

    PubMed  CrossRef  Google Scholar 

  11. Blankertz B, Acqualagna L, Dähne S, Haufe S, Schultze-Kraft M, Sturm I, Ušćumlic M, Wenzel MA, Curio G, Müller K-R. The Berlin brain-computer interface: progress beyond communication and control. Front Neurosci. 2016;10:530. https://doi.org/10.3389/fnins.2016.00530.

    CrossRef  PubMed  PubMed Central  Google Scholar 

  12. Cinel C, Valeriani D, Poli R. Neurotechnologies for human cognitive augmentation: current state of the art and future prospects. Front Hum Neurosci. 2019;13:31. https://doi.org/10.3389/fnhum.2019.00013.

    CrossRef  Google Scholar 

  13. Thakor NV. Translating the brain-machine interface. Sci Transl Med. 2013;5:210ps17.

    PubMed  CrossRef  Google Scholar 

  14. Nunez PL, Srinivasan R. Electric fields of the brain: the neurophysics of EEG. 2nd ed. Oxford: Oxford University Press; 2006.

    CrossRef  Google Scholar 

  15. Hämäläinen M, Hari R, Ilmoniemi RJ, Knuutila J, Lounasmaa OV. Magnetoencephalography—theory, instrumentation, and applications to noninvasive studies of the working human brain. Rev Mod Phys. 1993;65:413–97.

    CrossRef  Google Scholar 

  16. Logothetis NK, Pauls J, Augath M, Trinath T, Oeltermann A. Neurophysiological investigation of the basis of the fMRI signal. Nature. 2001;412:150–7.

    CAS  PubMed  CrossRef  Google Scholar 

  17. Ferrari M, Quaresima V. A brief review on the history of human functional near-infrared spectroscopy (fNIRS) development and fields of application. NeuroImage. 2012;63:921–35.

    PubMed  CrossRef  Google Scholar 

  18. Vidal JJ. Toward direct brain-computer communication. Annu Rev Biophys Bioeng. 1973;2:157–80.

    CAS  PubMed  CrossRef  Google Scholar 

  19. Birbaumer N, Ghanayim N, Hinterberger T, Iversen I, Kotchoubey B, Kübler A, Perelmouter J, Taub E, Flor H. A spelling device for the paralysed. Nature. 1999;398:297–8.

    CAS  PubMed  CrossRef  Google Scholar 

  20. Ramos-Murguialday A, Broetz D, Rea M, et al. Brain-machine interface in chronic stroke rehabilitation: a controlled study: BMI in chronic stroke. Ann Neurol. 2013;74:100–8.

    PubMed  PubMed Central  CrossRef  Google Scholar 

  21. Kübler A, Nijboer F, Mellinger J, Vaughan TM, Pawelzik H, Schalk G, McFarland DJ, Birbaumer N, Wolpaw JR. Patients with ALS can use sensorimotor rhythms to operate a brain-computer interface. Neurology. 2005;64:1775–7.

    PubMed  CrossRef  Google Scholar 

  22. Münßinger JI, Halder S, Kleih SC, Furdea A, Raco V, Hösle A, Kübler A. Brain painting: first evaluation of a new brain–computer interface application with ALS-patients and healthy volunteers. Front Neurosci. 2010;4:182. https://doi.org/10.3389/fnins.2010.00182.

    CrossRef  PubMed  PubMed Central  Google Scholar 

  23. Wolpaw JR, Birbaumer N, McFarland DJ, Pfurtscheller G, Vaughan TM. Brain-computer interfaces for communication and control. Clin Neurophysiol. 2002;113:767–91.

    PubMed  CrossRef  Google Scholar 

  24. Wolpaw JR. Brain-computer interfaces as new brain output pathways. J Physiol Lond. 2007;579:613–9.

    CAS  PubMed  PubMed Central  CrossRef  Google Scholar 

  25. Carlson T, JdR M. Brain-controlled wheelchairs: a robotic architecture. IEEE Robot Autom Mag. 2013;20:65–73.

    CrossRef  Google Scholar 

  26. Vukelić M, Gharabaghi A. Oscillatory entrainment of the motor cortical network during motor imagery is modulated by the feedback modality. NeuroImage. 2015;111:1–11.

    PubMed  CrossRef  Google Scholar 

  27. Brauchle D, Vukelić M, Bauer R, Gharabaghi A. Brain state-dependent robotic reaching movement with a multi-joint arm exoskeleton: combining brain-machine interfacing and robotic rehabilitation. Front Hum Neurosci. 2015;9:564. https://doi.org/10.3389/fnhum.2015.00564.

    CrossRef  PubMed  PubMed Central  Google Scholar 

  28. Vukelić M, Belardinelli P, Guggenberger R, Royter V, Gharabaghi A. Different oscillatory entrainment of cortical networks during motor imagery and neurofeedback in right and left handers. NeuroImage. 2019;195:190–202.

    PubMed  CrossRef  Google Scholar 

  29. Rohm M, Schneiders M, Müller C, Kreilinger A, Kaiser V, Müller-Putz GR, Rupp R. Hybrid brain–computer interfaces and hybrid neuroprostheses for restoration of upper limb functions in individuals with high-level spinal cord injury. Artif Intell Med. 2013;59:133–42.

    PubMed  CrossRef  Google Scholar 

  30. Leeb R, Tonin L, Rohm M, Desideri L, Carlson T, JdR M. Towards independence: a BCI telepresence robot for people with severe motor disabilities. Proc IEEE. 2015;103:969–82.

    CrossRef  Google Scholar 

  31. Bensch M, Karim AA, Mellinger J, Hinterberger T, Tangermann M, Bogdan M, Rosenstiel W, Birbaumer N. Nessi: an EEG-controlled web browser for severely paralyzed patients. Comput Intell Neurosci. 2007;2007:1–5.

    CrossRef  Google Scholar 

  32. Wyckoff S, Birbaumer N. Neurofeedback and brain-computer interfaces. In: Mostofsky DI, editor. The handbook of behavioral medicine. Oxford: Wiley; 2014. p. 275–312.

    CrossRef  Google Scholar 

  33. Birbaumer N, Ruiz S, Sitaram R. Learned regulation of brain metabolism. Trends Cogn Sci (Regul Ed). 2013;17:295–302.

    CrossRef  Google Scholar 

  34. Ruiz S, Lee S, Soekadar SR, Caria A, Veit R, Kircher T, Birbaumer N, Sitaram R. Acquired self-control of insula cortex modulates emotion recognition and brain network connectivity in schizophrenia. Hum Brain Mapp. 2013;34:200–12.

    PubMed  CrossRef  Google Scholar 

  35. Choi SW, Chi SE, Chung SY, Kim JW, Ahn CY, Kim HT. Is alpha wave neurofeedback effective with randomized clinical trials in depression? A pilot study. Neuropsychobiology. 2011;63:43–51.

    PubMed  CrossRef  Google Scholar 

  36. Ehlis A-C, Schneider S, Dresler T, Fallgatter AJ. Application of functional near-infrared spectroscopy in psychiatry. NeuroImage. 2014;85:478–88.

    PubMed  CrossRef  Google Scholar 

  37. Craik A, He Y, Contreras-Vidal JL. Deep learning for electroencephalogram (EEG) classification tasks: a review. J Neural Eng. 2019;16:031001.

    PubMed  CrossRef  Google Scholar 

  38. Lotte F, Bougrain L, Cichocki A, Clerc M, Congedo M, Rakotomamonjy A, Yger F. A review of classification algorithms for EEG-based brain–computer interfaces: a 10 year update. J Neural Eng. 2018;15:031005.

    CAS  PubMed  CrossRef  Google Scholar 

  39. Seifert C, Granitzer M, Bailer W, Orgel T, Gantner L, Kern R, Ziak H, Petit A, Schlötterer J, Zwicklbauer S. Ubiquitous access to digital cultural heritage. J Comput Cult Herit. 2017;10:1–27.

    CrossRef  Google Scholar 

  40. Radu V, Lane ND, Bhattacharya S, Mascolo C, Marina MK, Kawsar F. Towards multimodal deep learning for activity recognition on mobile devices. In: Proceedings of the 2016 ACM international joint conference on pervasive and ubiquitous computing adjunct—UbiComp’16. Heidelberg: ACM Press; 2016. p. 185–8.

    Google Scholar 

  41. Sankaran K, Zhu M, Guo XF, Ananda AL, Chan MC, Peh L-S. Using mobile phone barometer for low-power transportation context detection. In: Proceedings of the 12th ACM conference on embedded network sensor systems—SenSys’14. Memphis: ACM Press; 2014. p. 191–205.

    Google Scholar 

  42. Liu H, Wang J, Wang X, Qian Y. iSee: obstacle detection and feedback system for the blind. In: Proceedings of the 2015 ACM international joint conference on pervasive and ubiquitous computing and proceedings of the 2015 ACM international symposium on wearable computers—UbiComp’15. Osaka: ACM Press; 2015. p. 197–200.

    Google Scholar 

  43. Mens K, Capilla R, Cardozo N, Dumas B. A taxonomy of context-aware software variability approaches. In: Companion proceedings of the 15th international conference on modularity—MODULARITY companion 2016. Malaga: ACM Press, Spain; 2016. p. 119–24.

    Google Scholar 

  44. Kaklanis N, Biswas P, Mohamad Y, Gonzalez MF, Peissner M, Langdon P, Tzovaras D, Jung C. Towards standardisation of user models for simulation and adaptation purposes. Univ Access Inf Soc. 2016;15:21–48.

    CrossRef  Google Scholar 

  45. Yan L, Ma Q, Yoshikawa M. Classifying twitter users based on user profile and followers distribution. In: Decker H, Lhotská L, Link S, Basl J, Tjoa AM, editors. Database and expert systems applications. Berlin: Springer; 2013. p. 396–403.

    CrossRef  Google Scholar 

  46. Gao R, Hao B, Bai S, Li L, Li A, Zhu T. Improving user profile with personality traits predicted from social media content. In: Proceedings of the 7th ACM conference on recommender systems—RecSys’13. Hong Kong: ACM Press; 2013. p. 355–8.

    Google Scholar 

  47. Besel C, Schlötterer J, Granitzer M. On the quality of semantic interest profiles for onine social network consumers. SIGAPP Appl Comput Rev. 2016;16:5–14.

    CrossRef  Google Scholar 

  48. Licklider JCR. Man-computer Symbiosis. IRE Trans Hum Factors Electron HFE. 1960;1:4–11.

    CrossRef  Google Scholar 

  49. Pope AT, Bogart EH, Bartolome DS. Biocybernetic system evaluates indices of operator engagement in automated task. Biol Psychol. 1995;40:187–95.

    CAS  PubMed  CrossRef  Google Scholar 

  50. Krusienski DJ, Sellers EW, McFarland DJ, Vaughan TM, Wolpaw JR. Toward enhanced P300 speller performance. J Neurosci Methods. 2008;167:15–21.

    CAS  PubMed  CrossRef  Google Scholar 

  51. Kwak N-S, Müller K-R, Lee S-W. A lower limb exoskeleton control system based on steady state visual evoked potentials. J Neural Eng. 2015;12:056009.

    PubMed  CrossRef  Google Scholar 

  52. Yin E, Zhou Z, Jiang J, Chen F, Liu Y, Hu D. A novel hybrid BCI speller based on the incorporation of SSVEP into the P300 paradigm. J Neural Eng. 2013;10:026012.

    PubMed  CrossRef  Google Scholar 

  53. Zander TO, Kothe C. Towards passive brain-computer interfaces: applying brain-computer interface technology to human-machine systems in general. J Neural Eng. 2011;8:025005.

    PubMed  CrossRef  Google Scholar 

  54. McDowell K, Lin C-T, Oie KS, Jung T-P, Gordon S, Whitaker KW, Li S-Y, Lu S-W, Hairston WD. Real-world neuroimaging technologies. IEEE Access. 2013;1:131–49.

    CrossRef  Google Scholar 

  55. Zander TO, Andreessen LM, Berg A, Bleuel M, Pawlitzki J, Zawallich L, Krol LR, Gramann K. Evaluation of a dry EEG system for application of passive brain-computer interfaces in autonomous driving. Front Hum Neurosci. 2017;11:78. https://doi.org/10.3389/fnhum.2017.00078.

    CrossRef  PubMed  PubMed Central  Google Scholar 

  56. Piper SK, Krueger A, Koch SP, Mehnert J, Habermehl C, Steinbrink J, Obrig H, Schmitz CH. A wearable multi-channel fNIRS system for brain imaging in freely moving subjects. NeuroImage. 2014;85:64–71.

    PubMed  CrossRef  Google Scholar 

  57. Haeussinger FB, Dresler T, Heinzel S, Schecklmann M, Fallgatter AJ, Ehlis A-C. Reconstructing functional near-infrared spectroscopy (fNIRS) signals impaired by extra-cranial confounds: an easy-to-use filter method. NeuroImage. 2014;95:69–79.

    CAS  PubMed  CrossRef  Google Scholar 

  58. Schecklmann M, Mann A, Langguth B, Ehlis A-C, Fallgatter AJ, Haeussinger FB. The temporal muscle of the head can cause artifacts in optical imaging studies with functional near-infrared spectroscopy. Front Hum Neurosci. 2017;11:456. https://doi.org/10.3389/fnhum.2017.00456.

    CrossRef  PubMed  PubMed Central  Google Scholar 

  59. Biessmann F, Plis S, Meinecke FC, Eichele T, Müller K-R. Analysis of multimodal neuroimaging data. IEEE Rev Biomed Eng. 2011;4:26–58.

    PubMed  CrossRef  Google Scholar 

  60. Dahne S, BieBmann F, Meinecke FC, Mehnert J, Fazli S, Mtuller K-R. Multimodal integration of electrophysiological and hemodynamic signals. IEEE; 2014. p. 1–4.

    Google Scholar 

  61. Bauer W, Vukelić M. EMOIO research project: an interface to the world of computers. In: Neugebauer R, editor. Digital transformation. Berlin: Springer; 2019. p. 129–44.

    CrossRef  Google Scholar 

  62. Vukelić M, Pollmann K, Peissner M. Toward brain-based interaction between humans and technology. In: Neuroergonomics. Amsterdam: Elsevier; 2019. p. 105–9.

    CrossRef  Google Scholar 

  63. Pollmann K, Ziegler D, Peissner M, Vukelić M. A new experimental paradigm for affective research in neuro-adaptive technologies. New York: ACM Press; 2017. https://doi.org/10.1145/3038439.3038442.

    CrossRef  Google Scholar 

  64. Dijksterhuis C, de Waard D, Brookhuis KA, Mulder BLJM, de Jong R. Classifying visuomotor workload in a driving simulator using subject specific spatial brain patterns. Front Neurosci. 2013;7:149. https://doi.org/10.3389/fnins.2013.00149.

    CrossRef  PubMed  PubMed Central  Google Scholar 

  65. Berka C, Levendowski DJ, Lumicao MN, Yau A, Davis G, Zivkovic VT, Olmstead RE, Tremoulet PD, Craven PL. EEG correlates of task engagement and mental workload in vigilance, learning, and memory tasks. Aviat Space Environ Med. 2007;78:B231–44.

    PubMed  Google Scholar 

  66. Aricò P, Borghini G, Di Flumeri G, Colosimo A, Pozzi S, Babiloni F. A passive brain–computer interface application for the mental workload assessment on professional air traffic controllers during realistic air traffic control tasks. In: Progress in brain research. Amsterdam: Elsevier; 2016. p. 295–328.

    Google Scholar 

  67. Haufe S, Kim J-W, Kim I-H, Sonnleitner A, Schrauf M, Curio G, Blankertz B. Electrophysiology-based detection of emergency braking intention in real-world driving. J Neural Eng. 2014;11:056011.

    PubMed  CrossRef  Google Scholar 

  68. Lahmer M, Glatz C, Seibold VC, Chuang LL. Looming auditory collision warnings for semi-automated driving: an ERP Study. In: Proceedings of the 10th international conference on automotive user interfaces and interactive vehicular applications—automotiveUI’18. Toronto: ACM Press. 2018. p. 310–9.

    Google Scholar 

  69. Ihme K, Unni A, Zhang M, Rieger JW, Jipp M. Recognizing frustration of drivers from face video recordings and brain activation measurements with functional near-infrared spectroscopy. Front Hum Neurosci. 2018;12:327.

    PubMed  PubMed Central  CrossRef  Google Scholar 

  70. Dehais F, Roy RN, Scannella S. Inattentional deafness to auditory alarms: inter-individual differences, electrophysiological signature and single trial classification. Behav Brain Res. 2019;360:51–9.

    CAS  PubMed  CrossRef  Google Scholar 

  71. Dehais F, Duprès A, Blum S, Drougard N, Scannella S, Roy R, Lotte F. Monitoring Pilot’s mental workload using ERPs and spectral power with a six-dry-electrode EEG system in real flight conditions. Sensors. 2019;19:1324.

    CrossRef  PubMed Central  Google Scholar 

  72. Ayaz H, Shewokis PA, Bunce S, Izzetoglu K, Willems B, Onaral B. Optical brain monitoring for operator training and mental workload assessment. NeuroImage. 2012;59:36–47.

    PubMed  CrossRef  Google Scholar 

  73. Walter C, Rosenstiel W, Bogdan M, Gerjets P, Spüler M. Online EEG-based workload adaptation of an arithmetic learning environment. Front Hum Neurosci. 2017;11:286.

    PubMed  PubMed Central  CrossRef  Google Scholar 

  74. Mühl C, Allison B, Nijholt A, Chanel G. A survey of affective brain computer interfaces: principles, state-of-the-art, and challenges. Brain Comput Interfaces. 2014;1:66–84.

    CrossRef  Google Scholar 

  75. Liberati G, Federici S, Pasqualotto E. Extracting neurophysiological signals reflecting users’ emotional and affective responses to BCI use: a systematic literature review. NeuroRehabilitation. 2015;37:341–58.

    PubMed  CrossRef  Google Scholar 

  76. Zander TO, Krol LR, Birbaumer NP, Gramann K. Neuroadaptive technology enables implicit cursor control based on medial prefrontal cortex activity. Proc Natl Acad Sci. 2016;113(52):14898–903.

    CAS  PubMed  CrossRef  PubMed Central  Google Scholar 

  77. Fairclough SH. Fundamentals of physiological computing. Interact Comput. 2009;21:133–45.

    CrossRef  Google Scholar 

  78. Hettinger LJ, Branco P, Encarnacao LM, Bonato P. Neuroadaptive technologies: applying neuroergonomics to the design of advanced interfaces. Theor Issues Ergon Sci. 2003;4:220–37.

    CrossRef  Google Scholar 

  79. Sonnleitner A, Simon M, Kincses WE, Buchner A, Schrauf M. Alpha spindles as neurophysiological correlates indicating attentional shift in a simulated driving task. Int J Psychophysiol. 2012;83:110–8.

    PubMed  CrossRef  Google Scholar 

  80. Ricardo Chavarriaga LG. Detecting cognitive states for enhancing driving experience. In: International BCI meeting brain-computer interface 2013 proceedings of the fifth international brain-computer Interface meeting: defining the future June 3-7 2013 Asilomar conference center, Pacific grove, California, USA; 2015. https://doi.org/10.3217/978-3-85125-260-6-60.

  81. Unni A, Ihme K, Jipp M, Rieger JW. Assessing the driver’s current level of working memory load with high density functional near-infrared spectroscopy: a realistic driving simulator study. Front Hum Neurosci. 2017;11:167.

    PubMed  PubMed Central  CrossRef  Google Scholar 

  82. Pollmann K, Stefani O, Bengsch A, Peissner M, Vukelić M. How to work in the car of the future?: a neuroergonomical study assessing concentration, performance and workload based on subjective, behavioral and neurophysiological insights. In: Proceedings of the 2019 CHI conference on human factors in computing systems—CHI’19. Glasgow: ACM Press; 2019. p. 1–14.

    Google Scholar 

  83. Spüler M, Krumpe T, Walter C, Scharinger C, Rosenstiel W, Gerjets P. Brain-computer interfaces for educational applications. In: Buder J, Hesse FW, editors. Informational environments. Cham: Springer International Publishing; 2017. p. 177–201.

    CrossRef  Google Scholar 

  84. Kosuru RK, Lingelbach K, Bui M, Vukelić M. MindTrain: how to train your mind with interactive technologies. In: Proceedings of mensch und computer 2019 on—MuC’19. Hamburg: ACM Press; 2019. p. 643–7.

    Google Scholar 

  85. Perrin X, Chavarriaga R, Colas F, Siegwart R, Millán JR. Brain-coupled interaction for semi-autonomous navigation of an assistive robot. Roboti Auton Syst. 2010;58:1246–55.

    CrossRef  Google Scholar 

  86. Chavarriaga R, Sobolewski A, Millã¡n JdR. Errare machinale est: the use of error-related potentials in brain-machine interfaces. Front Neurosci. 2014;8:208. https://doi.org/10.3389/fnins.2014.00208.

  87. Iwane F, Halvagal MS, Iturrate I, Batzianoulis I, Chavarriaga R, Billard A, Millan JdR. Inferring subjective preferences on robot trajectories using EEG signals. In: 2019 9th international IEEE/EMBS conference on neural engineering (NER). San Francisco: IEEE; 2019. p. 255–8.

    Google Scholar 

  88. Edelman BJ, Meng J, Suma D, Zurn C, Nagarajan E, Baxter BS, Cline CC, He B. Noninvasive neuroimaging enhances continuous neural tracking for robotic device control. Sci Robot. 2019;4:eaaw6844.

    PubMed  PubMed Central  CrossRef  Google Scholar 

  89. Brouwer A-M, Zander TO, van Erp JBF, Korteling JE, Bronkhorst AW. Using neurophysiological signals that reflect cognitive or affective state: six recommendations to avoid common pitfalls. Front Neurosci. 2015;9:136. https://doi.org/10.3389/fnins.2015.00136.

    CrossRef  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mathias Vukelić .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and Permissions

Copyright information

© 2021 Springer Nature Switzerland AG

About this chapter

Verify currency and authenticity via CrossMark

Cite this chapter

Vukelić, M. (2021). Connecting Brain and Machine: The Mind Is the Next Frontier. In: Friedrich, O., Wolkenstein, A., Bublitz, C., Jox, R.J., Racine, E. (eds) Clinical Neurotechnology meets Artificial Intelligence. Advances in Neuroethics. Springer, Cham. https://doi.org/10.1007/978-3-030-64590-8_16

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-64590-8_16

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-64589-2

  • Online ISBN: 978-3-030-64590-8

  • eBook Packages: MedicineMedicine (R0)