Skip to main content

Ethical Implications of Brain-Computer Interface and Artificial Intelligence in Medicine and Health Care

  • Chapter
  • First Online:
Book cover Clinical Neurotechnology meets Artificial Intelligence

Part of the book series: Advances in Neuroethics ((AIN))

  • 796 Accesses

Abstract

Artificial intelligence and brain-computer interfaces are two novel technologies that have numerous potential areas of application in medicine. They raise, however, significant ethical implications that call for reflection and discussion before deciding about the use of these kinds of applications. In this chapter, I present some examples of these technologies, focusing first on the ethical implications of medical research on brain-computer interfaces. Using the example of a recent case of alleged scientific misconduct, I highlight the dangers inherent in this kind of research on clinical technology. Second, I focus on ethical issues in the clinical application of artificial intelligence and deep learning algorithms in medicine and highlight some risks and challenges for the patient–physician relationship, but more fundamentally also for the character of medicine.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Collaborators GBDN. Global, regional, and national burden of neurological disorders, 1990–2016: a systematic analysis for the Global Burden of Disease Study 2016. Lancet Neurol. 2019;18(5):459–80.

    Article  Google Scholar 

  2. The Telegraph. Older people are more scared of dementia than cancer, poll finds. 2014. https://www.telegraph.co.uk/news/health/elder/11008905/Older-people-are-more-scared-of-dementia-than-cancer-poll-finds.html. Accessed 13 February 2021.

  3. Stutzki R, Weber M, Reiter-Theil S, Simmen U, Borasio GD, Jox RJ. Attitudes towards hastened death in ALS: a prospective study of patients and family caregivers. Amyotroph Lateral Scler Frontotemporal Degener. 2014;15(1–2):68–76.

    Article  Google Scholar 

  4. Writing G, Edaravone ALSSG. Safety and efficacy of edaravone in well defined patients with amyotrophic lateral sclerosis: a randomised, double-blind, placebo-controlled trial. Lancet Neurol. 2017;16(7):505–12.

    Article  Google Scholar 

  5. Demertzi A, Jox RJ, Racine E, Laureys S. A European survey on attitudes towards pain and end-of-life issues in locked-in syndrome. Brain Inj. 2014;28(9):1209–15.

    Article  Google Scholar 

  6. Bruno MA, Bernheim JL, Ledoux D, Pellas F, Demertzi A, Laureys S. A survey on self-assessed well-being in a cohort of chronic locked-in syndrome patients: happy majority, miserable minority. BMJ Open. 2011;1(1):e000039.

    Article  Google Scholar 

  7. Wolpaw J, Winter Wolpaw E. Brain-computer interfaces: principles and practice. Oxford: Oxford University Press; 2012.

    Book  Google Scholar 

  8. Chaudhary U, Xia B, Silvoni S, Cohen LG, Birbaumer N. Brain-computer interface-based communication in the completely locked-in state. PLoS Biol. 2017;15(1):e1002593 (Retracted article).

    Google Scholar 

  9. Chaudhary U, Xia B, Silvoni S, Cohen LG, Birbaumer N. Correction: brain-computer interface-based communication in the completely locked-in state. PLoS Biol. 2018;16(12):e3000089.

    Article  Google Scholar 

  10. Howard J. Decoding the thoughts of patients who can’t even blink. 2017. https://edition.cnn.com/2017/01/31/health/locked-in-als-brain-computer-study/index.html. Accessed 13 Febuary 2021.

  11. Knapton S. Locked-in patients tell doctors they are ‘happy’ after computer reads thoughts. The Telegraph. 2017. https://www.telegraph.co.uk/science/2017/01/31/locked-in-patientstell-doctors-happy-computer-reads-thoughts/. Accessed 13 Febuary 2021.

  12. Mullin E. Reached mind via a mind-reading device, deeply paralyzed patients say they want to live. MIT Technology Review. 2017.

    Google Scholar 

  13. Dehaene S. Reading in the brain: the science and evolution of a human invention. Viking: New York; 2009.

    Google Scholar 

  14. Seed D. Brainwashing: the fictions of mind control: a study of novels and films since world war II. Kent: Kent State University Press; 2004.

    Google Scholar 

  15. Landwehr T. Locked-in Patienten: “Ich bin entsetzt über die Situation dieser Leute”. Die ZEIT. 2017. https://www.zeit.de/wissen/gesundheit/2017-01/locked-in-patienten-nielsbirbaumer-als-wachkoma-kopfhaube-kommunikation-schnittstelle. Accessed 13 February 2021.

  16. Spuler M. Questioning the evidence for BCI-based communication in the complete locked-in state. PLoS Biol. 2019;17(4):e2004750.

    Article  Google Scholar 

  17. Chaudhary U, Pathak S, Birbaumer N. Response to: “questioning the evidence for BCI-based communication in the complete locked-in state”. PLoS Biol. 2019;17(4):e3000063.

    Article  CAS  Google Scholar 

  18. Scherer R. Thought-based interaction: same data, same methods, different results? PLoS Biol. 2019;17(4):e3000190 (retracted article).

    Google Scholar 

  19. Bauer P, Illinger P, Krause T. Wunschdenken. Süddeutsche Zeitung Magazin. 2019. https://sz-magazin.sueddeutsche.de/gesundheit/wissenschaft-als-nervenkrankheit-professorniels-birbaumer-forschung-gehirn-medizin-87138?reduced=true. Accessed 13 Februry 2021.

  20. Vogel G. Research on communication with completely paralyzed patients prompts misconduct investigation: AAAS. 2019. https://www.sciencemag.org/news/2019/04/research-communication-completely-paralyzed-patients-prompts-misconduct-investigation. Accessed 13 February 2021.

  21. Neuroskeptic. The fall of Niels Birbaumer. 2019. https://www.discovermagazine.com/the-sciences/the-fall-of-niels-birbaumer. Accessed 13 February 2021.

  22. Hütten F, Krause T. Kommission sieht wissenschaftliches Fehlverhalten im Fall Birbaumer Süddeutsche Zeitung. 2019. https://www.sueddeutsche.de/gesundheit/deutschlandtuebingen-als-birbaumer-gehirn-gedanken-clis-1.4477468. Accessed 13 February 2021.

  23. Appelbaum PS. Clinical practice. Assessment of patients’ competence to consent to treatment. N Engl J Med. 2007;357(18):1834–40.

    Article  CAS  Google Scholar 

  24. World Medical Association. Declaration of Helsinki, revision 2013. 2013. https://www.wma.net/policies-post/wma-declaration-of-helsinki-ethical-principles-for-medical-research-involving-human-subjects/. Accessed 13 February 2021.

  25. Jox RJ, Bernat JL, Laureys S, Racine E. Disorders of consciousness: responding to requests for novel diagnostic and therapeutic interventions. Lancet Neurol. 2012;11(8):732–8.

    Article  Google Scholar 

  26. Cervera MA, Soekadar SR, Ushiba J, Millan JDR, Liu M, Birbaumer N, et al. Brain-computer interfaces for post-stroke motor rehabilitation: a meta-analysis. Ann Clin Transl Neurol. 2018;5(5):651–63.

    Article  Google Scholar 

  27. Jeunet C, Lotte F, Batail JM, Philip P, Micoulaud Franchi JA. Using recent BCI literature to deepen our understanding of clinical neurofeedback: a short review. Neuroscience. 2018;378:225–33.

    Article  CAS  Google Scholar 

  28. Shih JJ, Krusienski DJ, Wolpaw JR. Brain-computer interfaces in medicine. Mayo Clin Proc. 2012;87(3):268–79.

    Article  Google Scholar 

  29. Hosny A, Parmar C, Quackenbush J, Schwartz LH, Aerts H. Artificial intelligence in radiology. Nat Rev Cancer. 2018;18(8):500–10.

    Article  CAS  Google Scholar 

  30. Haenssle HA, Fink C, Schneiderbauer R, Toberer F, Buhl T, Blum A, et al. Man against machine: diagnostic performance of a deep learning convolutional neural network for dermoscopic melanoma recognition in comparison to 58 dermatologists. Ann Oncol. 2018;29(8):1836–42.

    Article  CAS  Google Scholar 

  31. Valentine M, Bihm DCJ, Wolf L, Hoyme HE, May PA, Buckley D, et al. Computer-aided recognition of facial attributes for fetal alcohol spectrum disorders. Pediatrics. 2017;140(6):e20162028.

    Article  Google Scholar 

  32. Cahan A, Cimino JJA. Learning health care system using computer-aided diagnosis. J Med Internet Res. 2017;19(3):e54.

    Article  Google Scholar 

  33. Norman GR, Monteiro SD, Sherbino J, Ilgen JS, Schmidt HG, Mamede S. The causes of errors in clinical reasoning: cognitive biases, knowledge deficits, and dual process thinking. Acad Med. 2017;92(1):23–30.

    Article  Google Scholar 

  34. Yu KH, Zhang C, Berry GJ, Altman RB, Re C, Rubin DL, et al. Predicting non-small cell lung cancer prognosis by fully automated microscopic pathology image features. Nat Commun. 2016;7:12474.

    Article  CAS  Google Scholar 

  35. Fulmer R, Joerin A, Gentile B, Lakerink L, Rauws M. Using psychological artificial intelligence (Tess) to relieve symptoms of depression and anxiety: randomized controlled trial. JMIR Ment Health. 2018;5(4):e64.

    Article  Google Scholar 

  36. Levinas E. Ethics and infinity. Pittsburgh: Duquesne University Press; 1995.

    Google Scholar 

  37. Rosa H. Social acceleration: a new theory of modernity. New York: Columbia University Press; 2015.

    Google Scholar 

  38. Frank AW. Narrative ethics as dialogical story-telling. Hast Cent Rep. 2014;44(1 Suppl):S16–20.

    Article  Google Scholar 

  39. Honneth A. Integrity and disrespect: principles of a conception of morality based on the theory of recognition. Political Theory. 1992;20(2):187–201.

    Article  Google Scholar 

Download references

Acknowledgment

Work on this paper was funded by the Federal Ministry of Education and Research (BMBF) in Germany (INTERFACES, 01GP1622A).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ralf J. Jox .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Jox, R.J. (2021). Ethical Implications of Brain-Computer Interface and Artificial Intelligence in Medicine and Health Care. In: Friedrich, O., Wolkenstein, A., Bublitz, C., Jox, R.J., Racine, E. (eds) Clinical Neurotechnology meets Artificial Intelligence. Advances in Neuroethics. Springer, Cham. https://doi.org/10.1007/978-3-030-64590-8_12

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-64590-8_12

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-64589-2

  • Online ISBN: 978-3-030-64590-8

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics