Skip to main content

Structural and Functional Representativity of GANs for Data Generation in Sequential Decision Making

  • Conference paper
  • First Online:
Machine Learning, Optimization, and Data Science (LOD 2020)

Abstract

In many sequential decision making problems progress is predominantly based on artificial data sets. This can be attributed to insufficient access to real data. Here we propose to mitigate this by using generative adversarial networks (GANs) to generate representative data sets from real data. Specifically, we investigate how GANs can generate training data for reinforcement learning (RL) problems. We distinguish structural properties (does the generated data follow the distribution of the original data), functional properties (is there a difference between the evaluation of policies for generated and real life data), and show that with a relatively small number of data points (a few thousand) we can train GANs that generate representative data for classical control RL environments.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Antoniou, A., Storkey, A., Edwards, H.: Data augmentation generative adversarial networks (2017)

    Google Scholar 

  2. Arjovsky, M., Chintala, S., Bottou, L.: Wasserstein Gan (2017)

    Google Scholar 

  3. Bang, H., Robins, J.M.: Doubly robust estimation in missing data and causal inference models. Biometrics 61(4), 962–973 (2005)

    Article  MathSciNet  Google Scholar 

  4. Brockman, G., et al.: Openai gym. CoRR abs/1606.01540 (2016). http://arxiv.org/abs/1606.01540

  5. Silver, D., et al.: Mastering the game of go with deep neural networks and tree search. Nature 529, 484–503 (2016). http://www.nature.com/nature/journal/v529/n7587/full/nature16961.html

  6. Dulac-Arnold, G., Mankowitz, D., Hester, T.: Challenges of real-world reinforcement learning (2019)

    Google Scholar 

  7. Gauci, J., et al.: Horizon: Facebook’s open source applied reinforcement learning platform (2018)

    Google Scholar 

  8. Glorot, X., Bengio, Y.: Understanding the difficulty of training deep feedforward neural networks. In: Proceedings of the Thirteenth International Conference on Artificial Intelligence and Statistics, pp. 249–256 (2010)

    Google Scholar 

  9. Goodfellow, I., et al.: Generative adversarial nets. In: Advances in Neural Information Processing Systems, pp. 2672–2680 (2014)

    Google Scholar 

  10. Hoogendoorn, M., Funk, B.: Machine Learning for the Quantified Self: On the Art of Learning from Sensory Data. Springer, Heidelberg (2017). https://doi.org/10.1007/978-3-319-66308-1

    Book  Google Scholar 

  11. Jiang, N., Li, L.: Doubly robust off-policy value evaluation for reinforcement learning. arXiv preprint arXiv:1511.03722 (2015)

  12. Kodali, N., Abernethy, J., Hays, J., Kira, Z.: On convergence and stability of GANs (2017)

    Google Scholar 

  13. Kullback, S., Leibler, R.A.: On information and sufficiency. Ann. Math. Stat. 22(1), 79–86 (1951). https://doi.org/10.1214/aoms/1177729694

    Article  MathSciNet  MATH  Google Scholar 

  14. Liu, Y., Zeng, Y., Chen, Y., Tang, J., Pan, Y.: Self-improving generative adversarial reinforcement learning. In: Proceedings of the 18th International Conference on Autonomous Agents and MultiAgent AAMAS 2019, Systems, pp. 52–60. International Foundation for Autonomous Agents and Multiagent Systems, Richland (2019). http://dl.acm.org/citation.cfm?id=3306127.3331673

  15. Mnih, V., et al.: Human-level control through deep reinforcement learning. Nature 518(7540), 529–533 (2015). https://doi.org/10.1038/nature14236

    Article  Google Scholar 

  16. Nagarajan, V., Kolter, J.Z.: Gradient descent GAN optimization is locally stable. In: Advances in Neural Information Processing Systems, vol. 30

    Google Scholar 

  17. Precup, D., Sutton, R.S., Dasgupta, S.: Off-policy temporal-difference learning with function approximation. In: ICML, pp. 417–424 (2001)

    Google Scholar 

  18. Salimans, T., Goodfellow, I., Zaremba, W., Cheung, V., Radford, A., Chen, X.: Improved techniques for training GANs (2016)

    Google Scholar 

  19. Sutton, R.S., Barto, A.G.: Reinforcement Learning: An Introduction, 2nd edn. MIT Press, Cambridge (2018)

    MATH  Google Scholar 

  20. Thanh-Tung, H., Tran, T., Venkatesh, S.: Improving generalization and stability of generative adversarial networks (2019)

    Google Scholar 

  21. Thomas, P., Brunskill, E.: Data-efficient off-policy policy evaluation for reinforcement learning. In: International Conference on Machine Learning, pp. 2139–2148 (2016)

    Google Scholar 

  22. Tseng, H.H., Luo, Y., Cui, S., Chien, J.T., Ten Haken, R.K., Naqa, I.E.: Deep reinforcement learning for automated radiation adaptation in lung cancer. Med. Phys. 44(12), 6690–6705 (2017)

    Article  Google Scholar 

  23. Vinyals, O., et al.: Grandmaster level in starcraft ii using multi-agent reinforcement learning. Nature 575, 350–354 (2019)

    Article  Google Scholar 

  24. Wiering, M., van Otterlo, M. (eds.): Reinforcement Learning: State of the Art. Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-642-27645-3

    Book  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ali el Hassouni .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

el Hassouni, A., Hoogendoorn, M., Eiben, A.E., Muhonen, V. (2020). Structural and Functional Representativity of GANs for Data Generation in Sequential Decision Making. In: Nicosia, G., et al. Machine Learning, Optimization, and Data Science. LOD 2020. Lecture Notes in Computer Science(), vol 12565. Springer, Cham. https://doi.org/10.1007/978-3-030-64583-0_41

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-64583-0_41

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-64582-3

  • Online ISBN: 978-3-030-64583-0

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics