Skip to main content

A Krill Herd Algorithm for the Multiobjective Energy Reduction Multi-Depot Vehicle Routing Problem

  • 818 Accesses

Part of the Lecture Notes in Computer Science book series (LNISA,volume 12565)

Abstract

Krill Herd algorithm is a powerful and relatively new Swarm Intelligence Algorithm that has been applied in a number of different kind of optimization problems since the time that it was published. In recent years there is a growing number of optimization models that are trying to reduce the energy consumption in routing problems. In this paper, a new variant of Krill Herd algorithm, the Parallel Multi-Start Non-dominated Sorting Krill Herd algorithm (PMS-KH), is proposed for the solution of a Vehicle Routing Problem variant, the Multiobjective Energy Reduction Multi-Depot Vehicle Routing Problem (MERMDVRP). Four different models are proposed where the distances between the customers and between the customers and the depots are either symmetric or asymmetric and the customers have either demand or pickup. The algorithm is compared with four other multiobjective algorithms, the Parallel Multi-Start Non-dominated Sorting Artificial Bee Colony (PMS-ABC), the Parallel Multi-Start Non-dominated Sorting Differential Evolution (PMS-NSDE), the Parallel Multi-Start Non-dominated Sorting Particle Swarm Optimization (PMS-NSPSO) and the Parallel Multi-Start Non-dominated Sorting Genetic Algorithm II (PMS-NSGA II) in a number of benchmark instances, giving very satisfactory results.

Keywords

  • Vehicle routing problem
  • Krill Herd
  • NSGA II
  • DE
  • PSO
  • ABC
  • VNS

This is a preview of subscription content, access via your institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • DOI: 10.1007/978-3-030-64583-0_39
  • Chapter length: 14 pages
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
eBook
USD   89.00
Price excludes VAT (USA)
  • ISBN: 978-3-030-64583-0
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
Softcover Book
USD   119.99
Price excludes VAT (USA)
Fig. 1.

References

  1. Demir, E., Bektaş, T., Laporte, G.: A review of recent research on green road freight transportation. Eur. J. Oper. Res. 237(3), 775–793 (2014)

    CrossRef  Google Scholar 

  2. Gandomi, A.H., Alavi, A.H.: Krill Herd: a new bio-inspired optimization algorithm. Commun. Nonlinear Sci. Numer. Simul. 17(12), 4831–4845 (2012)

    MathSciNet  CrossRef  Google Scholar 

  3. Li, J., Wang, R., Li, T., Lu, Z., Pardalos, P.: Benefit analysis of shared depot resources for multi-depot vehicle routing problem with fuel consumption. Transp. Res. Part D: Transp. Environ. 59, 417–432 (2018)

    CrossRef  Google Scholar 

  4. Lin, C., Choy, K.L., Ho, G.T.S., Chung, S.H., Lam, H.Y.: Survey of green vehicle routing problem: past and future trends. Expert Syst. Appl. 41(4), 1118–1138 (2014)

    CrossRef  Google Scholar 

  5. Marti, R., Pardalos, P.M., Resende, M.G.: Handbook of Heuristics. Springer (2018). ISBN 978-3-319-07123-7

    Google Scholar 

  6. Montoya-Torres, J.R., Franco, J.L., Isaza, S.N., Jimenez, H.F., Herazo-Padilla, N.: A literature review on the vehicle routing problem with multiple depots. Comput. Ind. Eng. 79, 115–129 (2015)

    CrossRef  Google Scholar 

  7. Psychas, I.-D., Marinaki, M., Marinakis, Y.: A parallel multi-start NSGA II algorithm for multiobjective energy reduction vehicle routing problem. In: Gaspar-Cunha, A., Henggeler Antunes, C., Coello, C.C. (eds.) EMO 2015. LNCS, vol. 9018, pp. 336–350. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-15934-8_23

    CrossRef  Google Scholar 

  8. Psychas, I.D., Marinaki, M., Marinakis, Y., Migdalas, A.: Non-dominated sorting differential evolution algorithm for the minimization of route based fuel consumption multiobjective vehicle routing problems. Energy Syst. 8, 785–814 (2016)

    CrossRef  Google Scholar 

  9. Psychas, I.-D., Marinaki, M., Marinakis, Y., Migdalas, A.: Minimizing the fuel consumption of a multiobjective vehicle routing problem using the parallel multi-start NSGA II algorithm. In: Kalyagin, V.A., Koldanov, P.A., Pardalos, P.M. (eds.) Models, Algorithms and Technologies for Network Analysis. SPMS, vol. 156, pp. 69–88. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-29608-1_5

    CrossRef  Google Scholar 

  10. Psychas, I.-D., Marinaki, M., Marinakis, Y., Migdalas, A.: Parallel multi-start non-dominated sorting particle swarm optimization algorithms for the minimization of the route-based fuel consumption of multiobjective vehicle routing problems. In: Butenko, S., Pardalos, P.M., Shylo, V. (eds.) Optimization Methods and Applications. SOIA, vol. 130, pp. 425–456. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-68640-0_20

    CrossRef  Google Scholar 

  11. Rapanaki, E., Psychas, I.D., Marinaki, M., Marinakis, Y., Migdalas, A.: A clonal selection algorithm for multiobjective energy reduction multi-depot vehicle routing problem. In: Nicosia, G., Pardalos, P., Giuffrida, G., Umeton, R., Sciacca, V. (eds.) Machine Learning, Optimization, and Data Science LOD 2018. LNCS, vol. 11331, pp. 381–393. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-13709-0_32

    CrossRef  Google Scholar 

  12. Rapanaki, E., Psychas, I.-D., Marinaki, M., Marinakis, Y.: An artificial bee colony algorithm for the multiobjective energy reduction multi-depot vehicle routing problem. In: Matsatsinis, N.F., Marinakis, Y., Pardalos, P. (eds.) LION 2019. LNCS, vol. 11968, pp. 208–223. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-38629-0_17

    CrossRef  Google Scholar 

  13. Toth, P., Vigo, D.: Vehicle Routing: Problems, Methods and Applications, 2nd edn. MOS-SIAM Series on Optimization, SIAM, Philadelphia (2014)

    Google Scholar 

  14. Wang, G.-G., Guo, L., Gandomi, A.H., Hao, G.-S., Wang, H.: Chaotic Krill Herd algorithm. Inf. Sci. 274, 17–34 (2014)

    MathSciNet  CrossRef  Google Scholar 

  15. Wang, G.-G., Gandomi, A.H., Alavi, A.H.: Stud krill herd algorithm. Neurocomputing 128, 363–370 (2014)

    CrossRef  Google Scholar 

  16. Wang, G.-G., Gandomi, A.H., Alavi, A.H., Gong, D.: A comprehensive review of krill herd algorithm: variants, hybrids and applications. Artif. Intell. Rev. 51(1), 119–148 (2017). https://doi.org/10.1007/s10462-017-9559-1

    CrossRef  Google Scholar 

  17. Xiao, Y., Zhao, Q., Kaku, I., Xu, Y.: Development of a fuel consumption optimization model for the capacitated vehicle routing problem. Comput. Oper. Res. 39(7), 1419–1431 (2012)

    MathSciNet  CrossRef  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Emmanouela Rapanaki .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and Permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this paper

Verify currency and authenticity via CrossMark

Cite this paper

Rapanaki, E., Psychas, I..D., Marinaki, M., Matsatsinis, N., Marinakis, Y. (2020). A Krill Herd Algorithm for the Multiobjective Energy Reduction Multi-Depot Vehicle Routing Problem. In: , et al. Machine Learning, Optimization, and Data Science. LOD 2020. Lecture Notes in Computer Science(), vol 12565. Springer, Cham. https://doi.org/10.1007/978-3-030-64583-0_39

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-64583-0_39

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-64582-3

  • Online ISBN: 978-3-030-64583-0

  • eBook Packages: Computer ScienceComputer Science (R0)