Skip to main content

Minimal Free Space Constraints for Implicit Distance Bounds

  • Conference paper
  • First Online:
Advances in Visual Computing (ISVC 2020)

Part of the book series: Lecture Notes in Computer Science ((LNIP,volume 12510))

Included in the following conference series:

  • 1596 Accesses

Abstract

A general approach for fitting implicit models to sensor data is to optimize an objective function measuring the quality of the fit. The objective function often involves evaluating the model’s implicit function at several points in space. When the model is expensive to evaluate, the number of points can become a bottleneck, making the use of volumetric information, such as free space constraints, challenging. When the model is the Euclidean distance function to its surface, previous work has been able to integrate free space constraints in the optimization problem, such that the number of distance computations is linear in the scene’s surface area. Here, we extend this work to only require the model’s implicit function to be a bound of the Euclidean distance. We derive necessary and sufficient conditions for the model to be consistent with free space. We validate the correctness of the derived constraints on implicit model fitting problems that benefit from the use of free space constraints.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Curless, B., Levoy, M.: A volumetric method for building complex models from range images. In: SIGGRAPH, pp. 303–312. ACM (1996)

    Google Scholar 

  2. Haugo, S., Stahl, A.: Iterative closest point with minimal free space constraints. In: Bebis, G., et al. (eds.) ISVC 2020. LNCS, vol. 12510, pp. 82–95. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-64559-5_7

  3. Hart, J.C.: Sphere tracing: a geometric method for the antialiased ray tracing of implicit surfaces. Vis. Comput. 12, 527–545 (1996)

    Article  Google Scholar 

  4. Pasko, A., Adzhiev, V., Sourin, A., Savchenko, V.: Function representation in geometric modeling: concepts, implementation and applications. Vis. Comput. 11, 429–446 (1995)

    Article  Google Scholar 

  5. Pasko, A., Fryazinov, O., Vilbrandt, T., Fayolle, P.A., Adzhiev, V.: Procedural function-based modelling of volumetric microstructures. Graph. Models 73, 165–181 (2011)

    Article  Google Scholar 

  6. Barr, A.H.: Global and local deformations of solid primitives. In: SIGGRAPH, pp. 21–30. ACM (1984)

    Google Scholar 

  7. Savchenko, V., Pasko, A.: Transformation of functionally defined shapes by extended space mappings. Vis. Comput. 14, 257–270 (1998)

    Article  Google Scholar 

  8. Pasko, G.I., Pasko, A.A., Kunii, T.L.: Bounded blending for function-based shape modeling. IEEE Comput. Graph. Appl. 25, 36–45 (2005)

    Article  Google Scholar 

  9. Sourin, A.I., Pasko, A.A.: Function representation for sweeping by a moving solid. IEEE Trans. Visual. Comput. Graph. 2, 11–18 (1996)

    Article  Google Scholar 

  10. Elfes, A.: Using occupancy grids for mobile robot perception and navigation. Computer 22, 46–57 (1989)

    Article  Google Scholar 

  11. Dragiev, S., Toussaint, M., Gienger, M.: Gaussian process implicit surfaces for shape estimation and grasping. In: IEEE International Conference on Robotics and Automation, pp. 2845–2850 (2011)

    Google Scholar 

  12. Seyb, D., Jacobson, A., Nowrouzezahrai, D., Jarosz, W.: Non-linear sphere tracing for rendering deformed signed distance fields. ACM Trans. Graph. (TOG) 38, 1–12 (2019)

    Article  Google Scholar 

  13. Fayolle, P.A., Pasko, A.: An evolutionary approach to the extraction of object construction trees from 3D point clouds. Comput.-Aided Des. 74, 1–17 (2016)

    Article  Google Scholar 

  14. Du, T., et al.: InverseCSG: automatic conversion of 3D models to CSG trees. In: SIGGRAPH Asia 2018 Technical Papers, p. 213. ACM (2018)

    Google Scholar 

  15. Mescheder, L., Oechsle, M., Niemeyer, M., Nowozin, S., Geiger, A.: Occupancy networks: learning 3D reconstruction in function space. In: IEEE Conference on Computer Vision and Pattern Recognition, pp. 4460–4470 (2019)

    Google Scholar 

  16. Niemeyer, M., Mescheder, L., Oechsle, M., Geiger, A.: Differentiable volumetric rendering: learning implicit 3D representations without 3D supervision. In: IEEE Conference on Computer Vision and Pattern Recognition, pp. 3504–3515 (2020)

    Google Scholar 

  17. Liu, S., Zhang, Y., Peng, S., Shi, B., Pollefeys, M., Cui, Z.: Dist: rendering deep implicit signed distance function with differentiable sphere tracing. In: IEEE Conference on Computer Vision and Pattern Recognition, pp. 2019–2028 (2020)

    Google Scholar 

  18. Newcombe, R.A., et al.: Kinectfusion: real-time dense surface mapping and tracking. In: ISMAR, pp. 127–136. IEEE (2011)

    Google Scholar 

  19. Jones, M.W., Baerentzen, J.A., Sramek, M.: 3D distance fields: a survey of techniques and applications. IEEE Trans. Visual. Comput. Graph. 12, 581–599 (2006)

    Article  Google Scholar 

  20. Park, J.J., Florence, P., Straub, J., Newcombe, R., Lovegrove, S.: Deepsdf: learning continuous signed distance functions for shape representation. In: IEEE Conference on Computer Vision and Pattern Recognition, pp. 165–174 (2019)

    Google Scholar 

  21. Besl, P.J., McKay, N.D.: A method for registration of 3-D shapes. IEEE Trans. Pattern Anal. Mach. Intell. 14, 239–256 (1992)

    Article  Google Scholar 

  22. Kalra, D., Barr, A.H.: Guaranteed ray intersections with implicit surfaces. In: SIGGRAPH, pp. 297–306 (1989)

    Google Scholar 

  23. Kutulakos, K.N., Seitz, S.M.: A theory of shape by space carving. Int. J. Comput. Vision 38, 199–218 (2000)

    Article  Google Scholar 

  24. Tagliasacchi, A., Olson, M., Zhang, H., Hamarneh, G., Cohen-Or, D.: Vase: volume-aware surface evolution for surface reconstruction from incomplete point clouds. In: Computer Graphics Forum, vol. 30, pp. 1563–1571. Wiley Online Library (2011)

    Google Scholar 

  25. Berger, M., et al.: A survey of surface reconstruction from point clouds. In: Computer Graphics Forum, pp. 301–329. Wiley Online Library (2017)

    Google Scholar 

  26. Gargallo, P., Prados, E., Sturm, P.: Minimizing the reprojection error in surface reconstruction from images. In: IEEE International Conference on Computer Vision, pp. 1–8 (2007)

    Google Scholar 

  27. Delaunoy, A., Prados, E.: Gradient flows for optimizing triangular mesh-based surfaces: applications to 3D reconstruction problems dealing with visibility. Int. J. Comput. Vision 95, 100–123 (2011)

    Article  MathSciNet  Google Scholar 

  28. Ganapathi, V., Plagemann, C., Koller, D., Thrun, S.: Real time motion capture using a single time-of-flight camera. In: IEEE Conference on Computer Vision and Pattern Recognition, pp. 755–762 (2010)

    Google Scholar 

  29. Ganapathi, V., Plagemann, C., Koller, D., Thrun, S.: Real-time human pose tracking from range data. In: Fitzgibbon, A., Lazebnik, S., Perona, P., Sato, Y., Schmid, C. (eds.) ECCV 2012. LNCS, vol. 7577, pp. 738–751. Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-642-33783-3_53

    Chapter  Google Scholar 

  30. Qian, C., Sun, X., Wei, Y., Tang, X., Sun, J.: Realtime and robust hand tracking from depth. In: IEEE Conference on Computer Vision and Pattern Recognition, pp. 1106–1113 (2014)

    Google Scholar 

  31. Schmidt, T., Newcombe, R.A., Fox, D.: DART: dense articulated real-time tracking. In: Robotics: Science and Systems (2014)

    Google Scholar 

  32. Xiao, J., Furukawa, Y.: Reconstructing the world’s museums. Int. J. Comput. Vision 110, 243–258 (2014)

    Article  Google Scholar 

  33. Tagliasacchi, A., Schröder, M., Tkach, A., Bouaziz, S., Botsch, M., Pauly, M.: Robust articulated-ICP for real-time hand tracking. In: Computer Graphics Forum, vol. 34, pp. 101–114. Wiley Online Library (2015)

    Google Scholar 

  34. Tkach, A., Pauly, M., Tagliasacchi, A.: Sphere-meshes for real-time hand modeling and tracking. ACM Trans. Graph. (ToG) 35, 1–11 (2016)

    Article  Google Scholar 

  35. Siddiqi, K., Pizer, S.: Medial Representations: Mathematics, Algorithms and Applications, vol. 37. Springer, Heidelberg (2008). https://doi.org/10.1007/978-1-4020-8658-8

    Book  MATH  Google Scholar 

  36. Ma, J., Bae, S.W., Choi, S.: 3D medial axis point approximation using nearest neighbors and the normal field. Visual Comput. 28, 7–19 (2012)

    Article  Google Scholar 

  37. Ricci, A.: A constructive geometry for computer graphics. Comput. J. 16, 157–160 (1973)

    Article  Google Scholar 

Download references

Acknowledgments

This work is partly supported by the Research Council of Norway through the Centre of Excellence funding scheme, project number 223254, NTNU AMOS.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Simen Haugo .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Haugo, S., Stahl, A. (2020). Minimal Free Space Constraints for Implicit Distance Bounds. In: Bebis, G., et al. Advances in Visual Computing. ISVC 2020. Lecture Notes in Computer Science(), vol 12510. Springer, Cham. https://doi.org/10.1007/978-3-030-64559-5_8

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-64559-5_8

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-64558-8

  • Online ISBN: 978-3-030-64559-5

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics