Skip to main content

Multiscale Detection of Cancerous Tissue in High Resolution Slide Scans

  • Conference paper
  • First Online:
Advances in Visual Computing (ISVC 2020)

Abstract

We present an algorithm for multi-scale tumor (chimeric cell) detection in high resolution slide scans. The broad range of tumor sizes in our dataset pose a challenge for current Convolutional Neural Networks (CNN) which often fail when image features are very small (8 pixels). Our approach modifies the effective receptive field at different layers in a CNN so that objects with a broad range of varying scales can be detected in a single forward pass. We define rules for computing adaptive prior anchor boxes which we show are solvable under the equal proportion interval principle. Two mechanisms in our CNN architecture alleviate the effects of non-discriminative features prevalent in our data - a foveal detection algorithm that incorporates a cascade residual-inception module and a deconvolution module with additional context information. When integrated into a Single Shot MultiBox Detector (SSD), these additions permit more accurate detection of small-scale objects. The results permit efficient real-time analysis of medical images in pathology and related biomedical research fields.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Bejnordi, B.E., et al.: Deep learning-based assessment of tumor-associated stroma for diagnosing breast cancer in histopathology images. CoRR abs/1702.05803 (2017). http://arxiv.org/abs/1702.05803

  2. Bell, S., Lawrence Zitnick, C., Bala, K., Girshick, R.: Inside-outside net: detecting objects in context with skip pooling and recurrent neural networks. In: IEEE Conference on Computer Vision and Pattern Recognition, vol. 1, pp. 2874–2883 (2016)

    Google Scholar 

  3. Cao, G., Xie, X., Yang, W., Liao, Q., Shi, G., Wu, J.: Feature-fused SSD: fast detection for small objects. In: Ninth International Conference on Graphic and Image Processing (ICGIP 2017), vol. 10615, p. 106151E. International Society for Optics and Photonics (2018)

    Google Scholar 

  4. Cao, Z., et al.: Breast tumor detection in ultrasound images using deep learning. In: Wu, G., Munsell, B.C., Zhan, Y., Bai, W., Sanroma, G., Coupé, P. (eds.) Patch-MI 2017. LNCS, vol. 10530, pp. 121–128. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-67434-6_14

    Chapter  Google Scholar 

  5. Cruz-Roa, A., Gilmore, H., Basavanhally, A., Feldman, M.: Accurate and reproducible invasive breast cancer detection in whole-slide images: a deep learning approach for quantifying tumor extent. Sci. Rep. 7, 46450 (2017)

    Article  Google Scholar 

  6. Dai, J., Li, Y., He, K., Sun, J.: R-FCN: object detection via region-based fully convolutional networks. In: Lee, D.D., Sugiyama, M., Luxburg, U.V., Guyon, I., Garnett, R. (eds.) Advances in Neural Information Processing Systems, vol. 29, pp. 379–387. Curran Associates, Inc. (2016). http://papers.nips.cc/paper/6465-r-fcn-object-detection-via-region-based-fully-convolutional-networks.pdf

  7. Deng, J., Dong, W., Socher, R., Li, L.J., Li, K., Fei-Fei, L.: ImageNet: a large-scale hierarchical image database. In: CVPR 2009 (2009)

    Google Scholar 

  8. Everingham, M., Eslami, S.M.A., Van Gool, L., Williams, C.K.I., Winn, J., Zisserman, A.: The pascal visual object classes challenge: a retrospective. Int. J. Comput. Vis. 111(1), 98–136 (2015)

    Article  Google Scholar 

  9. Fu, C.Y., Liu, W., Ranga, A., Tyagi, A., Berg, A.C.: DSSD: deconvolutional single shot detector. arXiv preprint arXiv:1701.06659 (2017)

  10. Gidaris, S., Komodakis, N.: Object detection via a multi-region and semantic segmentation-aware CNN model. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 1134–1142 (2015)

    Google Scholar 

  11. Girshick, R.: Fast R-CNN. In: Proceedings of the International Conference on Computer Vision (ICCV) (2015)

    Google Scholar 

  12. Girshick, R., Donahue, J., Darrell, T., Malik, J.: Rich feature hierarchies for accurate object detection and semantic segmentation. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (2014)

    Google Scholar 

  13. He, K., Gkioxari, G., Dollár, P., Girshick, R.: Mask R-CNN. In: Proceedings of the International Conference on Computer Vision (ICCV) (2017)

    Google Scholar 

  14. He, K., Zhang, X., Ren, S., Sun, J.: Spatial pyramid pooling in deep convolutional networks for visual recognition. IEEE Trans. Pattern Anal. Mach. Intell. 37(9), 1904–1916 (2015)

    Article  Google Scholar 

  15. He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 770–778 (2016)

    Google Scholar 

  16. Hirasawa, T., et al.: Application of artificial intelligence using a convolutional neural network for detecting gastric cancer in endoscopic images. Gastr. Cancer 21(4), 653–660 (2018). https://doi.org/10.1007/s10120-018-0793-2

    Article  Google Scholar 

  17. Hou, L., Samaras, D., Kurc, T.M., Gao, Y., Davis, J.E., Saltz, J.H.: Patch-based convolutional neural network for whole slide tissue image classification. In: 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 2424–2433 (2016)

    Google Scholar 

  18. Hu, H., Gu, J., Zhang, Z., Dai, J., Wei, Y.: Relation networks for object detection. arXiv preprint arXiv:1711.11575 (2017)

  19. Hu, P., Ramanan, D.: Finding tiny faces. In: 2017 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 1522–1530. IEEE (2017)

    Google Scholar 

  20. Jia, Y., et al.: Caffe: convolutional architecture for fast feature embedding. arXiv preprint arXiv:1408.5093 (2014)

  21. Kim, K., Cheon, Y., Hong, S., Roh, B., Park, M.: PVANET: deep but lightweight neural networks for real-time object detection. CoRR abs/1608.08021 (2016). http://arxiv.org/abs/1608.08021

  22. Kong, T., Sun, F., Yao, A., Liu, H., Lu, M., Chen, Y.: RON: reverse connection with objectness prior networks for object detection. In: IEEE Conference on Computer Vision and Pattern Recognition, vol. 1, p. 2 (2017)

    Google Scholar 

  23. Kong, T., Yao, A., Chen, Y., Sun, F.: HyperNet: towards accurate region proposal generation and joint object detection. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 845–853 (2016)

    Google Scholar 

  24. Kourou, K., Exarchos, T.P., Exarchos, K.P., Karamouzis, M.V., Fotiadis, D.I.: Machine learning applications in cancer prognosis and prediction. Comput. Struct. Biotechnol. J. 13(C), 8–17 (2015)

    Article  Google Scholar 

  25. Lee, Y., Kim, H., Park, E., Cui, X., Kim, H.: Wide-residual-inception networks for real-time object detection. In: 2017 IEEE Intelligent Vehicles Symposium (IV), pp. 758–764. IEEE (2017)

    Google Scholar 

  26. Li, N., et al.: Detection and attention: diagnosing pulmonary lung cancer from CT by imitating physicians. CoRR abs/1712.05114 (2017). http://arxiv.org/abs/1712.05114

  27. Li, N., et al.: Detection and attention: diagnosing pulmonary lung cancer from CT by imitating physicians. arXiv preprint arXiv:1712.05114 (2017)

  28. Lin, T., Dollár, P., Girshick, R.B., He, K., Hariharan, B., Belongie, S.J.: Feature pyramid networks for object detection. CoRR abs/1612.03144 (2016). http://arxiv.org/abs/1612.03144

  29. Liu, W., et al.: SSD: single shot multibox detector. In: Leibe, B., Matas, J., Sebe, N., Welling, M. (eds.) ECCV 2016. LNCS, vol. 9905, pp. 21–37. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-46448-0_2

    Chapter  Google Scholar 

  30. Luo, W., Li, Y., Urtasun, R., Zemel, R.: Understanding the effective receptive field in deep convolutional neural networks. In: Advances in Neural Information Processing Systems (NIPS), pp. 4898–4906 (2016)

    Google Scholar 

  31. Meng, Z., Fan, X., Chen, X., Chen, M., Tong, Y.: Detecting small signs from large images. CoRR abs/1706.08574 (2017). http://arxiv.org/abs/1706.08574

  32. Najibi, M., Samangouei, P., Chellappa, R., Davis, L.S.: SSH: single stage headless face detector. In: ICCV, pp. 4885–4894 (2017)

    Google Scholar 

  33. Redmon, J., Farhadi, A.: YOLO9000: better, faster, stronger. In: 2017 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 6517–6525, July 2017

    Google Scholar 

  34. Redmon, J., Divvala, S., Girshick, R., Farhadi, A.: You only look once: unified, real-time object detection, pp. 779–788, June 2016. https://doi.org/10.1109/CVPR.2016.91

  35. Ren, S., He, K., Girshick, R., Sun, J.: Faster R-CNN: towards real-time object detection with region proposal networks. In: Neural Information Processing Systems (NIPS) (2015)

    Google Scholar 

  36. Ren, S., He, K., Girshick, R., Sun, J.: Faster R-CNN: towards real-time object detection with region proposal networks. In: Proceedings of the 28th International Conference on Neural Information Processing Systems, NIPS 2015, vol. 1, pp. 91–99. MIT Press, Cambridge (2015). http://dl.acm.org/citation.cfm?id=2969239.2969250

  37. Simonyan, K., Zisserman, A.: Very deep convolutional networks for large-scale image recognition. arXiv preprint arXiv:1409.1556 (2014)

  38. Szegedy, C., et al.: Going deeper with convolutions. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 1–9 (2015)

    Google Scholar 

  39. Uijlings, J., van de Sande, K., Gevers, T., Smeulders, A.: Selective search for object recognition. Int. J. Comput. Vis. (2013). https://doi.org/10.1007/s11263-013-0620-5. http://www.huppelen.nl/publications/selectiveSearchDraft.pdf

  40. Wang, D., Khosla, A., Gargeya, R., Irshad, H., Beck, A.H.: Deep learning for identifying metastatic breast cancer. arXiv preprint arXiv:1606.05718 (2016)

  41. Weng, X.: The study of setting region proposals of object detection network SSD. master thesis in Electromechanical Science and Technology, Xidian University, June 2017

    Google Scholar 

  42. Yang, X., et al.: A deep learning approach for tumor tissue image classification, February 2016

    Google Scholar 

  43. Yu, W., Yang, K., Bai, Y., Xiao, T., Yao, H., Rui, Y.: Visualizing and comparing AlexNet and VGG using deconvolutional layers. In: Proceedings of the 33rd International Conference on Machine Learning (2016)

    Google Scholar 

  44. Zagoruyko, S., et al.: A multipath network for object detection. arXiv preprint arXiv:1604.02135 (2016)

  45. Zhang, S., Wen, L., Bian, X., Lei, Z., Li, S.Z.: Single-shot refinement neural network for object detection. In: CVPR (2018)

    Google Scholar 

  46. Zhang, S., Zhu, X., Lei, Z., Shi, H., Wang, X., Li, S.Z.: S3FD: single shot scale-invariant face detector. In: 2017 IEEE International Conference on Computer Vision (ICCV), pp. 192–201. IEEE (2017)

    Google Scholar 

  47. Zhu, C., Tao, R., Luu, K., Savvides, M.: Seeing small faces from robust anchor’s perspective. In: IEEE Conference on Computer Vision and Pattern Recognition (2018)

    Google Scholar 

  48. Zhu, C., Tao, R., Luu, K., Savvides, M.: Seeing small faces from robust anchor’s perspective. CoRR abs/1802.09058 (2018). http://arxiv.org/abs/1802.09058

  49. Zhu, C., Zheng, Y., Luu, K., Savvides, M.: CMS-RCNN: contextual multi-scale region-based CNN for unconstrained face detection. CoRR abs/1606.05413 (2016). http://arxiv.org/abs/1606.05413

  50. Zitnick, C.L., Dollár, P.: Edge boxes: locating object proposals from edges. In: Fleet, D., Pajdla, T., Schiele, B., Tuytelaars, T. (eds.) ECCV 2014. LNCS, vol. 8693, pp. 391–405. Springer, Cham (2014). https://doi.org/10.1007/978-3-319-10602-1_26. https://www.microsoft.com/en-us/research/publication/edge-boxes-locating-object-proposals-from-edges/

    Chapter  Google Scholar 

Download references

Acknowledgements

We thank K08 DK085141 and the American Cancer Society Chris DiMarco Institutional Research Grant (CDH) for funding support. This work was conducted at the UF Graphics Imaging and Light Measurement Lab (GILMLab).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Corey Toler-Franklin .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Zhang, Q., Heldermon, C.D., Toler-Franklin, C. (2020). Multiscale Detection of Cancerous Tissue in High Resolution Slide Scans. In: Bebis, G., et al. Advances in Visual Computing. ISVC 2020. Lecture Notes in Computer Science(), vol 12510. Springer, Cham. https://doi.org/10.1007/978-3-030-64559-5_11

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-64559-5_11

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-64558-8

  • Online ISBN: 978-3-030-64559-5

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics